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1 Introduction 

As global energy demands grow, the need for sustainable and efficient heating and cooling systems 
has become more urgent, particularly within urban and industrial sectors where energy-intensive 
District Heating and Cooling (DHC) networks are prevalent. The REWARDHeat project, funded 
under the European Union’s Horizon 2020 program, aims to transform DHC systems by integrating 
renewable and waste heat sources, making these networks more sustainable, efficient, and cost-
effective. 

The primary focus of the activity reported in this report is to incorporate advanced control systems 
and leverage digital technologies to optimize the operational efficiency of DHC networks. Through 
strategic partnerships with several European demonstration sites, we tested various control 
methodologies and data-driven strategies that aim to improve energy recovery and distribution, 
lower emissions, and minimize operational costs. Each demonstration site brings unique 
characteristics and challenges, enabling the exploration of diverse approaches to network control 
and optimisation, which are documented throughout this report. 

Advanced controls in DHC systems include innovations in predictive control, data mining, and real-
time optimisation. These systems are designed to respond dynamically to fluctuating energy 
demands and integrate renewable and waste energy sources efficiently. In this context, the 
REWARDHeat project utilizes machine learning algorithms, SCADA systems, and advanced data 
analytics to create data-informed solutions. By harnessing digital tools and data-driven models, the 
project aspires to transition DHC networks from conventional, static control approaches to 
adaptive, optimized systems that can better accommodate variability in renewable energy 
availability and demand patterns. 

Each section of the report delves into the technical and operational challenges faced at specific 
demonstration sites and highlights key findings from data-driven and machine-learning 
approaches to control optimisation. The insights gathered here serve as valuable benchmarks and 
inspiration for the future development of smart DHC systems. 
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2 Albertslund (Artelys) 

2.1 Description of the demonstration site 

The case study of Albertslund is located about fifteen kilometres west of central Copenhagen. 
Currently, the existing DHN supplies heat to a major portion of the municipality. The DHN was 
initially built in 1964 and covers around 90% of the municipality’s thermal demand.  

This network is connected to the Greater Copenhagen DH transmission network, which integrates 
heat produced by waste incineration, CHP plants and peak-load boilers, and provides most of the 
heat uses throughout the year, i.e., 100 MW of heat capacity from the transmission company VEKS, 
supplied at 100-110ᵒC. 

Additionally to withdrawing energy from the backbone, natural gas and oil boilers are also set up 
as local reserve sources, accounting for 145 MW of capacity installed, while waste heat from a data 
centre (0.35 MW approximately, recovered at ~20°C) is also supplied nearly constantly to the DHN 
by means of a heat pump.  

Around 270 GWh are distributed along the DHN and 220 GWh are finally supplied to end users 
yearly. 

 

 
Figure 1 – Albertslund municipality; Porsager district in orange 
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2.1.1 Objectives of the demonstration activity 

The project involves two partners: Albertslund Forsyning’s, the municipal utility company who 
manages the DHN and Artelys who have developed the datamining and optimisation tool. 

Albertslund Forsyning’s overall energy efficiency strategy focuses on moving from a 3rd generation, 
high-temperature (i.e. 85°C) and centralised DHN, to a 4th generation system with lower supply 
temperature (i.e. 60°C) and a more distributed heat generation. To implement their strategy, a 
range of activities is foreseen addressing both heat distribution and distributed generation. 

In the framework of the REWARDHeat project, effort has been placed on lowering the supply 
temperature to a subnetwork, consisting of around 110 residential houses in Porsager, an area in 
the South-East of Albertslund. This has been pursued by: 

• Installing a shunt valve to lower the district heating supply temperature from 85°C to 60°C 
across the entire area. This measure follows an extensive retrofit of most of the district's 
homes, completed in recent years in collaboration with Albertslund Forsyning. The change 
occurred on the fourth of January 2021. 

• Exploitation of local waste heat from two supermarkets using heat pumps. 

• Developing a datamining software to gather and structure monitoring data from two 
separated SCADA solutions in place and enable implementing performance optimisation 
through continuous supply temperature modulation (led by Artelys within WP5 scope). 

• Exploration of a data-based approach to minimize DHN operation costs. In particular, it aims 
at adapting the operation of the shunt in order to control the return temperature under a 
certain threshold to prevent maluses and foster bonuses. (Incidentally reducing heat losses 
too) (led by Artelys within WP5 scope) 

 

The rest of this chapter will focus on describing the implementation of the third and fourth 
measure. 

2.2 Control problem formulation 

As previously mentioned, the implemented controls centred around the widely available data. Key 
to this is the data mining software, which enables the creation of a clear picture of the Albertslund 
DHN, providing valuable insights for the daily operation of the DHN. Furthermore, a data-driven 
approach to DHN return temperature control through shunt operation optimisation has been 
explored in the specific case of the Porsager district. 

Data mining tool 

The boom of decentralized networks linked to smart meters with remote communication, which is 
the case for Albertslund, makes it possible to gain increased knowledge of real-time DH network's 
operation. Due to large amounts of data, it is at the same time increasingly difficult via ordinary 
control tools to perform assessments of whole networks. Moreover, as traditional control 
strategies do not necessarily suffice, the need arises for new approaches that can handle and 
summarize the vast amount of data into data patterns that indicate to the operators when the 
system does not operate optimally. Consequently, the following goals have been pursued: 

As traditional operating strategies do not necessarily suffice, the need arises for new approaches 
and methods that can handle and summarize the amounts of data and the data patterns that, for 
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example, can provide optimal operation or give indications when the system does not function 
optimally. Consequently, the following goals have been pursued: 

• importing data from several data sources: The municipality employs a variety of equipment 
and sensors from different companies but lacks software to unify all the network data from 
heat supply to heat consumption. This situation is common, as equipment providers typically 
offer multiple software services dedicated to their own hardware; 

• visualising all data in a unified interface: this aspect is particularly important as it provides the 
operator with a global overview of the network’s operation; 

• cross-correlating information from the different data sources, e.g., visualising customer data 
on a geographical basis and connecting this to information on network operation; 

• aggregating data at the district level, e.g., aggregating customers uses and providing 
information on the average forward temperature at the customer side. 

 

Shunt optimisation 

Additionally, the datamining software leverages these aggregating and structuring capabilities to 
forecast future thermal loads insisting on the network, based on weather forecasts already 
available, and to perform optimisation tasks.  

Particularly, the optimisation task implemented is the continuous identification of the minimum 
supply temperature allowing to guarantee thermal comfort at user side. One considered option is 
to increase the network temperature punctually during the peak hours. However, there are 
constraints on thermal inertia inside the pipes, requiring anticipating the temperature rise. Hence 
the requirement for a reliable load forecast of the network which is being specified. 

As part of the optimisation work, the goal was to explore operation solutions for the shunt valve 
set up, allowing to minimize energy losses and thus reducing operating costs. One way to decrease 
the energy losses is to reduce the return temperature. To tackle this measure, a data-driven 
approached has been chosen, relying on modelling the return temperature as a function of shunt 
valve control parameters (supply pressure and temperature). 

2.3 Description of the control implemented 

2.3.1 SCADA system 

As mentioned, Albertslund Forsyning handles several data sources. The datamining software 
connects three different data sources: 

• SCADA system delivering data from several network locations, including weather station 
providing weather data used for thermal loads forecasting, and supply data from the heat 
exchangers connecting the local DHN to Copenhagen’s transmission network; 

• Consumption data: Albertslund installed heat meters at the customers substations. These 
meters are referred to as the ‘smart meters’ in this document. They are not directly connected 
to the SCADA system and data is gathered over a different stream; 

• Network data: is static GIS information containing a detailed geographical representation of 
the DHN. 
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SCADA system 

Being part of the Greater Copenhagen system, the utility relies almost entirely on the transmission 
network. In particular, the local DHN is supplied by means of six heat exchangers. In addition, a 
small portion of the heat is gathered from a data centre and one supermarket. 

The SCADA system collects all the data produced at the heat exchangers, including cumulative 
water and energy exchanged, water and energy flows, supply and return temperature, supply and 
return pressure. The data is retrieved as a csv file every 5 minutes. 

In addition, the SCADA system integrates the weather data produced by the local weather station 
including the following information: 

• wind speed and direction; 

• outdoor temperature and humidity; 

• solar irradiation. 

 

Smart meters 

Albertslund Forsyning can count on around 6300 heat meters which data is acquired on a hourly 
basis. The data is actually stored on Artelys servers. The metered data includes activation time, 
cumulative water and energy exchanged, water and energy flows, supply and return temperature. 
The data is retrieved as a csv file of around 1MB every hour. 

Network data 

The network data is considered static information since network updates are not so frequent. This 
data is shared as a GIS file containing the network layout. Albertslund's heating system is 
composed of around 25000 pipes. Each connection and the connections to customers are 
geographically identified and reported in the GIS file. 

2.3.2 Data mining software 

A data mining software is a platform that is not used to directly control a system, rather it helps 
initially the operators identifying eventual margins for improving the management of the system 
and secondly implementing a better management by computing optimal operation trajectories. 
With this respect, the optimal control options are communicated to the operator who decides for 
the actual utilisation, with eventual modifications. 

Software architecture 

The data mining software is a web application, the choice of a web version has several advantages: 

• Granting access to the software to a new user is simple. 

• The delivery of the software is simplified, in particular in case of a version upgrade.  

• It offers a server able to handle way more efficiently intensive computing. 

• Data protection on the servers is ensured.  

 

The complete architecture for the Albertslund data mining software is described hereafter from 
data collection to the consumption of KPIs by the DHC network operators. 
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Figure 2 - Albertslund data mining software's architecture 

User interfaces 

At first, a cartographic view of the municipality, including all DHN users and network pipelines has 
been elaborated, as shown in Figure 3. 

The pipe layout is displayed along with the other 4 asset types (namely district, weather station, 
heat exchangers and smart meters). The districts are defined as polygons on the map whereas the 
other asset types (weather station, heat exchangers and smart meters) are represented with 
points. The map is interactive as it is possible to zoom-in to investigate specific areas. 

 

 
Figure 3 – Cartographic view with Albertslund DHC network. 
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Figure 4 – Asset view from the cartographic view. 

 

 
Figure 5 – Visualisation of timeseries in the asset view. 

 

Apart from the zoom, the user can also open the asset view directly from the map by clicking on 
one of the assets. When doing so, the asset view opens alongside the map, providing an overview 
of the asset attributes. This includes an overview of each smart meter asset: 

• Supply temperature (°C) timeseries 

• Return temperature (°C) timeseries  

• Volume (m3), accounting for the water volume delivered since the meter reset. 

• Hour counter (h), i.e., elapsed time since the meter reset. 
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In addition, several attributes are computed to be used as indicators either on the map or the KPI 
view. The timeseries can also be visualized by the user simply clicking in the asset view as presented 
in Figure 5. 

KPIs calculated 

This section offers a first overview of the KPIs implemented in the datamining software. Using the 
geographical coordinates of the smart meters and districts, it is possible to assess the district of 
each customer. Several indicators have been computed at the district level in the form of 
aggregated KPIs as below where the average forward and return temperatures for different 
districts can be compared. 

 
Figure 6 – Average supply and return temperature by district. 

 

 
Figure 7 – Energy consumption by district. 
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Figure 8 – Detection of outliers in the cartographic view. 

In addition, timeseries indicators can be computed for each district, relying on the smart meter 
data as presented below. 

Again, the interface of the datamining software is completely interactive to facilitate as much as 
possible the user workflow. To that end, it is possible to navigate in the timeseries values and zoom 
in for further investigation of potentially crucial time periods. 

The last indicator is available directly in the cartographic view. It highlights all the smart meter 
outliers with regards to their current forward temperature as presented in Figure 8. The customers 
represented in blue (resp. red) are meters for which their current forward temperature is 
particularly low (resp. high) with regards to their historical data. The outlier analysis was tested to 
demonstrate the feature capabilities and integration in the cartographic view. 

An asset-based model of the network for better scalability 

One of the key concepts of the software is the ability to model any production and/or consumption 
unit or cluster (representing an aggregation of generation units) by a so-called “asset” in the energy 
system model. For instance, heat exchangers, gas boilers and network pipes are all “physical 
assets” that are used to model heat production and transmission. 

Each asset type is defined by an asset model and a set of parameters. Several assets are available 
in the asset library; new models can be defined as needed, e.g., with the development of low-
temperature district heating networks and the integration of distributed renewable and waste heat 
sources, new models with specific parameters and constraints might be needed. 

The operational data is retrieved from ftp severs through a regular operation to collect, clean, store 
the data. The same script then calls the python forecasting api to request the 6 hour-rolling-
forecast data and write it into a database. The data is then displayed through multiple UIs from 
both Artelys Crystal Energy Planner (GIS view, asset-based data) and its integrated Grafana 
dashboard (DHC network wide KPIs). 
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2.3.3  Shunt optimisation 

In this section, we report on how the shut operation optimisation has been performed. Figure 9 
provides a simplified representation of the Porsager heating network. There are two ways to 
control the operation of the Porsager grid through the shunt aimed to reduce the return 
temperature. One can change the supply temperature after the shunt (T_f2 in the figure), thanks 
to a mix between the supply and the return water inside the shunt. The second variable that can 
be changed is the supply flow.  

 
Figure 9 - Simplified representation of the Porsager heating network. Upstream of the shunt (left) is the 

transmission grid, downstream (right) is the Porsager distribution grid. Forward pipes are shown in red and 
return pipes in blue. 

Several methodological choices could be made to tackle the problem stated above. For instance, 
one could choose to define an objective function, model the network with thermodynamic 
equations linking our decision variables and exogenous variables to our target variables, and 
eventually use an optimisation technique to solve it. Instead, we have experimented with a data-
driven approach to benefit from the data environment implemented with the datamining tool. 

 This approach relies on statistically learning the relationships between the decision variables 
(supply temperature and supply pressure) and the target variables (return temperature). Once this 
relationship has been learnt from the data, one can knowingly select the right decision variable 
values given a certain exogenous situation to control the target variables. To learn such a 
relationship, we use machine learning techniques and exogenous variables, such as house meter 
consumption and some weather data, that are responsible for this relationship. 

This process is summarised in the right part of Figure 10 for the case of return temperature 
optimisation. Once the learning process is complete (left part of Figure 10), the prediction model 
can be used to optimise shunt operation (right part of Figure 10). Here is an example of how this 
process could run in the case of return temperature optimisation:  

1. Feed the model with current decision variable values and exogenous variables (or forecasts) and 
compute a prediction of the return temperature. 

2. While the predicted return temperature is out of the acceptable range: 

a) Change the value of one of the decision variables. 

b) Compute the new predicted return temperature. 

c) Return to step 2. 

3. Save the final values of the decision variables as the ones to use. 
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Figure 10 - Diagram representing the data-based shunt optimisation approach. The left part corresponds to 
learning the relationship between the decision variables and the target variables. The right part shows how 

this learnt relationship could be used to optimally operate the grid on a daily basis 

2.4 Assessment of the data mining tool performance 

2.4.1 Key Performance Indicators 

First, the geographical components of the KPIs are a major factor to efficiently identify network 
disruptions by cross-checking different data sources. The objective is to provide complementary 
information between the cartographic view and the KPI view. Several KPIs can also be visualized 
on the cartographic view as data layers to facilitate the network operator analysis. 

To identify network weaknesses or inefficiencies, highlighting the smart meters with extreme 
measurements (among all the smart meters) is particularly interesting. To that end, it is possible 
to visualize the list of smart meters with extreme values. Depending on the operator interest, 
several values can be considered e.g., the highest return temperature, the lowest forward 
temperature or the lowest temperature difference (between forward and return temperature). 

These indicators can be visualized on the map with a dedicated layer highlighting the customers 
with such characteristics giving the operator a global overview of the network state. 

In addition to extreme measurements among the smart meters, inconsistent measurements for 
a given smart meter can be identified, relying on its historical data. One efficient approach 
suggested by the literature is to use the interquartile range (IQR), which measures statistical 
dispersion as the difference between the 75th and 25th percentiles. For a distribution of smart 
meter energy consumption values over time, the IQR can be calculated and visualised as shown in 
the figure below. The IQR is often employed to identify outliers in data. Outliers are defined as 
observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR. In a boxplot, the highest and lowest 
values within this range are indicated by the whiskers (often with an additional bar at the end), 
while any outliers are shown as individual points. 
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Figure 11 Detection of value outliers (in red) in the cartographic view. 

Albertslund Forsyning particularly emphasised the importance of integrating information from 
multiple data sources. Consequently, efforts were made to combine data from both the smart 
meters and the SCADA system. The temperature readings from the smart meters are merged with 
the meteorological data from the weather station integrated into the SCADA system. The currently 
computed indicators are: 

• the ratio of the smart meter supply temperature to the outdoor temperature provided by the 
weather station; 

• the ratio of the smart meter temperature difference to the outdoor temperature. 

 

Although these indicators are simple, they are useful for the network operator, who relies on their 
knowledge of the network and typical behaviours. 

Asset model developed for Albertslund 

A first asset model was implemented for Albertslund demo site considering the network 
specificities and available data. This model is composed of 6 different asset types: Heat exchanger, 
Shunt, Weather station, Smart meter, District, Pipe. Each asset contains several attributes either 
retrieved directly from various data sources or computed for visualisation and KPIs analysis. 

2.4.2 Shunt optimisation 

The load forecasting model uses 2 different algorithms in parallel and compares them at each 
simulation step, to reduce prediction uncertainty. The Explainable Boosting Machine (EBM) is a 
tree-based, cyclic gradient boosting Generalized Additive Model with automatic interaction 
detection. EBMs are often as accurate as state-of-the-art blackbox models while remaining 
completely interpretable. Additionally, a Generalized Additive Model (GAM) algorithm has been 
implemented. GAMs combine parametric and non-parametric techniques, making them suitable 
for a wide range of modelling problems, from standard linear regression to more complex tasks. 
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Both models perform well during training, as shown in Table 1, resulting in excellent performance 
in return temperature forecasting. The Mean Absolute Percentage Error (MAPE) is 3% for unseen 
data. Additionally, Figure 10 demonstrates that the predictions closely match the observations. 

Table 1 – Prediction performance of the models employed 

MAPE (%) EBM GAM Return temp 
TRAIN 7.0 7.3 2.1 
TEST 7.0 5.9 3.1 

 

 
Figure 11 - Time series of the observed (blue) and predicted (orange) return temperature from 27th 

August 2023 to 17th September 2023 

 

Despite the promising initial results, the implementation of the optimisation methodology has 
proven difficult: it turned out that the data made available are limited in terms of depth and quality. 
For an accurate optimisation, the model of the return temperature should have been trained with 
various sets of decision variables, but the historic data does not exhibit a large distribution over 
the decision variables as the operator always use the same set of values. The model is thus not 
allowed to learn an accurate estimate of the return temperature when changing the common 
decision variables. Furthermore, there is very little available data that can reflect on the network 
behaviour before the lowering of the supply temperature. 

2.5 Lessons learned 

The main learnings out of operating the data mining tool are: 

• Barriers on SCADA and Data Quality: Although the Albertslund DHN is equipped with data 
retrieval systems, they sometimes fail to provide good quality data or any data at all, causing 
issues with the implemented tools. 

• Shunt Optimisation: The limited quantity and quality of data made it difficult to accurately 
capture the relationship between decision variables and the return temperature, thus 
preventing us from fully achieving our initial objective. 

• Continuous commissioning: Despite these limitations, the nature of the implemented tools 
fosters continuous improvement in data quality. 
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• Early objectives definition: The project has highlighted the importance and necessity of 
involving DHN network experts and operators (the software end-users) throughout the 
development of the data mining software. It will be crucial for future projects to emphasise 
this point and organise methodologies that facilitate smooth communication between both 
parties. 

• Compliance with GDPR: led to some delays when handling sensitive data related to 
customers’ addresses and consumption, as anonymisation work had to be carried out. 

• Integrating different sources of information proved to be very insightful: The 
cartographic view provided by the data mining tool has been particularly appreciated, 
especially for the operational perspective it offers. Additionally, the ability for users of the data 
mining tool to directly add new components to the network (such as pipes) as it evolves would 
be beneficial. 
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3 Helsingborg (EURAC) 

3.1 Description of the demonstration site 

This demonstration site is located in the district of Drottninghög in Helsingborg (Sweden), and 
consists of a newly built, small-size, heating and cooling network supplying energy to four new 
apartment blocks (5 to 7 floors and 110 apartments, with a total living area of 7,795 m2, see Figure 
12. The construction has been implemented by Tornet, who are specialized in construction and 
management of affordable rental properties, with a commitment to energy efficiency, responsible 
material utilisation, and sustainable product choices. 

            
Figure 12: The four multifamily homes during their construction 

 

 
Figure 13. Layout of the Tornet Energy Centre in Helsingborg 

The Energy Centre at the core of the small network consists of a thermal substation and a 6-pipe 
distribution network designed to cover the demands for DHW, SH, and SC. Figure 13 shows a 
simplified P&ID of the system: the energy system interfaces with the Helsingborg DHN network 
(purple lines) via two counterflow HXs—one dual-stage HX to meet DHW demand (red lines) and 



 

 

www.rewardheat.eu  Page 16 of 104 

one for SH demand (orange lines). The system uses two identical hot water tanks, each with a 
capacity of 750 litres: a high-temperature TES dedicated to meeting DHW peak loads and a low-
temperature buffer that interfaces with the SH system and preheats DHW.  

The Energy Centre also integrates a 4-pipe geothermal HP, equipped with a variable-speed 
compressor and a de-superheater that recovers heat from DHW preparation for space heating 
purposes. For sake of simplifying the system description, the latter is represented as two separate 
HPs. The HP is used solely for heating, while SC is achieved through free cooling (blue lines): heat 
is extracted from the building via the Air Handling Units (AHU) and directed to the boreholes. 

Free cooling alone is insufficient to balance heat extraction during winter. To mitigate this, a 
recharging strategy for the geothermal installation is devised: PVT panels are employed to capture 
solar thermal energy; additionally, waste heat is recovered during space heating season from Air 
Handling Units’ exhaust air duct, gathering an almost constant 15 kW thermal power. PVT and 
waste heat recovered are primarily used at HP evaporator for DHW and SH delivery to the building; 
excess heat, which cannot be directly exploited by the HP is fed to the BTES aimed to balance 
extraction. 

The connection between the DH network and BTES, which could potentially supply thermal energy 
from the DH to the ground, is currently non-operational due to regulatory restrictions. Heat from 
the Helsingborg DHN is mainly drawn during summer when boreholes are being charged, while in 
winter it covers peak loads. 

3.1.1 Objectives of the demonstration activity 

The project involves three partners: INDEPRO, tasked with strategic planning, ARVALLA, overseeing 
construction management, and EURAC who developed an optimised RBC for the management of 
the boreholes field. The project aims to achieve the following objectives: 

• Installation of a standardized substation, streamlining construction processes through the 
deployment of standardized design. 

• Integration of a geothermal HP in the substation aimed to minimise the import of energy from 
the district heating network. 

• Integration of PVT panels, reducing electricity consumption from the grid and charging the 
boreholes field in summer. 

• Integration of a state-of-the-art smart monitoring and control hardware and software. 

• Selection of the most effective way of sourcing heat for the buildings, between the DHN and 
the borehole field. 

3.2 Control problem formulation 

The latter bullet point is concerned in this report, as this has been the object of a parametric 
analysis leading to an optimised RBC managing sourcing thermal energy from the DHN. 

As reported previously, heat from the Helsingborg DHN is only used to a limited extent in 
summertime, to cover the DHW demand. Indeed, this is to some extent justified by a very low price 
encountered along this season; on the contrary though, this management strategy requires using 
electricity to run the HP system during winter, when this vector is affected by high prices, lower 
fraction of RES compared to summer and eventual shortages are encountered during peak hours. 
This is particularly relevant nowadays in Scania, as most of the hydropower plants in Sweden are 
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located in the north of the country, and the transmission lines struggle transferring electricity to 
the south when subject to heavy loads. 

In fact, the main driver for implementing such a management strategy is regulatory, as companies 
delivering affordable housing and profiting of national subsidies to this end are subject to 
limitations in terms of the energy imported from grids to their properties. While this is clearly 
driven by the aim to achieve high-quality, energy-efficient constructions, it can also result in 
suboptimal management of energy use both on-site and across the overall energy system. 

As an example for a different exploitation of energy from the grids, Thermal energy from the DHN 
could be employed in summer to charge the boreholes thermal energy storage, achieving higher 
ground temperatures at the end of summer compared to what happens today, thus leading to 
higher seasonal COP values and lower electricity consumption associated to the HP system when 
operated in winter.  

Having this in mind, in this project we have analysed the energy use at the demonstration site not 
only from the final energy and energy bills perspective, rather we extended the view to the yearly 
primary energy use and overall CO2 emissions. 

Specifically, we have modelled the buildings + Energy Centre system and run a parametric analysis 
aimed to infer simple and replicable management rules. The parametric simulation campaign has 
span over a range of varying boundary conditions. 

3.3 Description of the control implemented 

3.3.1 SCADA system 

Communication devices, both wired and wireless, enable data exchange between the substation 
and central monitoring stations. A SCADA system facilitates data acquisition, monitoring, and 
analysis. 

The data collection is primarily performed with heat meters set up on the system branches, 
allowing to monitor energy and mass flows, as well as supply and return temperatures. 
Additionally, temperature sensors are located in water storages and around heat exchangers, 
providing data to PLCs, which implement RBC strategies in feedback loop.  

While this equipment is generally sufficient for fault detection and diagnostics, there are noticeable 
gaps in the data required for a comprehensive analysis of the system energy performance. 
Specifically, the electricity consumption of individual circulation pumps and HP compressors is not 
recorded. Consequently, we have calculate the electricity uses based on the mass flows distributed 
and on the COP values declared by the manufacturer, for what concerns the HP. Furthermore, the 
DHW circuit lacks both a temperature sensor to measure the main water temperature and a flow 
meter to monitor the recirculation flow rate. 

The data is saved on a cloud server, with an acquisition period of 5 minutes; FastAPI is employed 
to develop web applications that interact seamlessly with the control system. This integration 
ensures precise control and monitoring of the Energy Centre, as data is available to operators who 
can enhance system efficiency and reliability. 

3.3.2 Advanced controls 

A rule-based control system is implemented on top of the energy system to manage the operation 
of various generation, distribution, and emission units. This control system follows a static strategy 
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based on pre-established rules. Consequently, its efficiency depends on the expertise of the person 
defining the rules. Despite this, rule-based control generally exhibits robustness and strong real-
time performance by applying practical control rules based on the system’s status. However, due 
to its reliance on experience, it becomes difficult to identify optimal control points for complex, 
dynamic systems. The rule-based control concerned is structured into blocks that interact with one 
another to generate the control signals for the energy system. The blocks constituting the control 
are: 

• Feedback signals: information acquired from the sensors 

• Hystereses: elaboration of the acquisition signals in Boolean format. The hysteresis, in thermal 
systems, is useful to avoid continuous oscillation between two states due to the nature of the 
system 

• Schemes: represent the working modes used by the HP system. The schemes are defined as 
logical phrase of hysteresis 

• Modulations: refers to pumps and valves and it is used to scale the control signal of the 
component. The modulation can be either a fixed value or a function of other independent 
variables (temperature or mass flow rate) 

• Control signals: commands given to the devices to be controlled; it is the combination of 
schemes and modulations 

 

A schematic of the rule-based control is shown in Figure 14. More details on the system control are 
reported in D4.5. 

 
Figure 14. Block diagram for the structure of the rule-based control  

During the analysis of the monitoring data, it was observed that the energy extracted from the 
BTES during winter is higher than the energy stored during summer. Therefore, its temperature 
decreases over time, reducing the COP of the heat pump. On the one hand, this increases the 
electricity consumption; on the other, the heat drawn from the DH also rises, because the heat 
pump will generate less heat during winter. 

 
Figure 15. Average BTES temperature over 10 years of simulation 
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A 10-year simulation was conducted to better understand this phenomenon. Figure 15 shows the 
hourly average ground temperature in the BTES over the 10-year period. A seasonal behaviour of 
the temperature is noticeable. The BTES temperature decreases during the heating season 
because heat is extracted from the ground to run the heat pump. During the cooling season, the 
BTES temperature increases because heat is transferred from the air handling units used for space 
cooling to the BTES. During this period, there is also high production from the PVT system, allowing 
more thermal energy to be stored in the BTES. 

However, the balance is negative, meaning the temperature at the end of the year is lower than at 
the beginning of the year. This occurs annually, causing the temperature to decrease over time. 
After 10 years, the average temperature is almost 3°C lower than the initial temperature. The 
decrease of the inlet temperature implies a decrease of the COP, especially when the heat pump 
is working in part-load conditions.  

Figure 16 reports on the annual energy cost to cover the thermal loads of the building, divided in 
electrical and DH cost (see Table 3 for specific monthly costs). After 10 years the total energy cost 
increases by almost € 1’100, which corresponds to 9% of the initial value. The electricity cost 
increased by 2.9% (€ 210) and DH cost increased by 20.7% (€ 860).  

To mitigate the effect of the temperature decrease, different strategies to charge the BTES during 
summer were defined, making use of DH energy during summer months, as represented in Figure 
17. 

 
Figure 16. Variation of energy cost of the system over 10 years 

 

 
Figure 17. Scheme S7 to charge the BTES with DH in Summer 
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The HX between the DH and the BTES circuit has a nominal capacity of 50kW. In order to still permit 
space cooling, the temperature at the outlet of the BTES cannot exceed 15°C. Control logics 
elaborated to charge the BTES with DH account for these boundaries. The target energy to be 
stored in the BTES is 60MWh per year, corresponding to the annual imbalance assessed through 
monitoring data. Considering a maximum thermal capacity of 50kW, the drawing energy from DH 
for BTES charging should be operated for about 1200 hours, which correspond to roughly 2 full 
operation months. To limit the thermal losses of the BTES it is convenient to operate it when DH 
cost is low and right before winter season commences, i.e., August and September. Since feeding 
50kW into the BTES circuit can raise the BTES outlet temperature above the 15°C limit, alternative 
charging powers and different periods might be considered. The selected parameters are reported 
in Table 2. 

Table 2. Advanced strategies to charge the BTES 

 Peak charging 
power [kW] 

Start of 
charging period 

End of charging 
period 

1 0 - - 

2 50 1st August 15th September 

3 25 15th April 30th September 

4 20 1st April 30th September 

5 16 1st April 30th September 

 

Table 3. Monthly price for electricity and district heating 

Month Electricity price 

[€/MWh] 

DH price 

[€/MWh] 

January 87.2 70 

February 69.8 70 

March 77.0 70 

April 65.6 30 

May 43.1 30 

June 51.9 30 

July 39.9 30 

August 41.4 30 

September 30.6 30 

October 40.7 70 

November 84.7 70 

December 80.9 70 
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3.4 Assessment of the control performance 

Using different strategies has a different impact on the BTES. Figure 18 shows the internal energy 
variation of the BTES in one year. The initial internal energy is set to zero. Whenever energy is 
extracted from the BTES the internal energy drops and when energy is injected the BTES internal 
energy increases.  

 
Figure 18. Internal energy variation of BTES with different charging strategies 

For all these simulations the first part of the graph is the same: in this period the energy extracted 
from the BTES to run the heat pump is higher than the energy gain from the solar thermal circuit. 
Starting from April, the internal energy of the BTES increases.  

The case feeding of 50kW from DH from the 1st of August to the 15th of September shows a negative 
energy balance. Theoretically, this combination should be sufficient to balance the injected and 
extracted energy. However, because the thermal power is high, the outlet temperature of the BTES 
often exceeds the limit temperature of 15°C. Therefore, this power cannot be continuously 
exploited and the actual stored energy results lower than the theoretically available. 

By halving the thermal power and expanding the charging period, the energy fed to the BTES is 
higher than the extracted. Consequently, the BTES internal energy balance is positive and the 
average BTES temperature increases over the year. This benefits the performance of the system, 
but also results in higher operative costs. The analysis highlights that the charging strategy that 
keeps the internal energy balance unaltered consists in a charging power of 20kW between the 1st 
April to the 30th September. Figure 19 shows the average BTES temperature profile over 10 years 
of operation, considering the different strategies.  

Figure 20 and Figure 21 show the monthly electrical energy and DH consumption of the two 
different controls: actual vs. latest described. Considering the system operation after 10 years, 
using about 60MWh of energy DH to load the BTES in summer allows to reduce the electricity use 
in winter by about 4.2MWh and DH energy consumption by 3.5MWh. 

Considering the energy prices reported in Table 3, after 10 years the annual electrical energy cost 
is € 7’157.36 when using DH during summer, and € 7’487.01 for the base case scenario; the DH 
costs are € 6’367.30 and € 5’021.34 respectively. This means that charging the BTES allow to save € 
329.65 for the electrical energy consumption but the total energy cost is € 1’016.31 higher.  
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Figure 19. 10-year average BTES temperature profile according to different charging strategies 

 

 
Figure 20. Electrical energy consumption of the 10th year 

 

 
Figure 21. DH consumption of the 10th year 

 

Figure 22, Figure 23 and Figure 24 show the cumulative energy cost (electricity, DH and total 
respectively) over the years of system operation considering the prices indicated in Table 3. Over 
10 years, additional costs for about € 11’784.90 are accumulated. In order to have a breakeven, the 
price of DH from April to September should be less than 8€/MWh. 
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Figure 22. Cumulative cost of electrical energy (10 years) 

 

 
Figure 23. Cumulative cost of DH (10 years) 

 

 
Figure 24. Cumulative cost of total energy (10 years) 
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Beside the economic analysis it is also relevant to consider environmental aspects, such as primary 
energy use CO2 emissions. To start the analysis, it is crucial to define the primary energy and the 
CO2 emission factors for district heating and for electricity: 

• District heating primary energy factor → 0.07 [1] 

• District heating CO2 emission factor → 4.80 g/kWh [1] 

• Electrical energy primary energy factor → 1.98 [2] 

• Electrical energy CO2 emission factor → 28 g/kWh [3] 

 

Table 6 reports the primary energy consumption of the system without considering the BTES 
charge with district heating and considering the BTES charge with 20kW from district heating from 
the 1st of April to the 30th of September. In the primary energy calculation, the renewable primary 
energy taken from the BTES is not considered, only the primary energy and CO2 emissions of 
electricity and district heating are considered. 

Because the primary energy factor of district heating is much lower than the primary energy factor 
of electricity, the scenario in which district heating is used to charge the BTES presents a lower 
primary energy factor. As the decrease in electricity use is about 4.2 MWh/y, whilst the energy use 
from DH increases by 49.3 MWh/y, the primary energy balance is positive if the ration between 
primary energy factors is higher than 11.7, like in this case). On the opposite, since the ratio 
between CO2 emission is about 6, CO2 emissions increase in the advanced scenario. 

 

Table 4. Primary energy consumption of the system without BTES charging and with BTES charging (20kW 
from April 1st to September 30th) 

 Qth_DH = 0kW Qth_DH = 20kW (1st April – 30th September)  
Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

Primary 
energy 
[MWh] 

Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

Primary 
energy 
[MWh] 

January 15.4 14.5 29.8 15.0 13.6 28.0 
February 10.6 14.7 29.8 10.6 14.2 28.8 
March 8.6 14.8 29.9 7.9 15.0 30.2 
April 1.5 11.8 23.5 6.1 11.8 23.8 
May 7.2 4.8 10.0 15.7 4.8 10.5 
June 12.2 0.5 1.8 22.3 0.5 2.6 
July 12.0 0.6 1.9 21.9 0.6 2.6 
August 11.5 0.5 1.8 21.8 0.5 2.5 
Septemb 7.0 3.2 6.8 16.2 3.1 7.4 
October 1.1 10.9 21.7 1.1 10.5 20.9 
Novembe
r 

2.6 14.4 28.7 2.6 12.9 25.8 

Decembe
r 

11.4 15.4 31.3 9.2 14.4 29.1 

 
101.1 106.0 217.0 150.4 101.8 212.1 
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Table 5. CO2 emissions of the system without BTES charging and with BTES charging (20kW from April 1st to 
September 30th) 

 Qth_DH = 0kW Qth_DH = 20kW (1st April – 30th September)  
Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consump 
[MWh] 

CO2 
emissions 

[kg] 

Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

CO2 
emissions 

[kg] 

January 15.4 14.5 480.6 15.0 13.6 453.5 
February 10.6 14.7 462.0 10.6 14.2 447.8 
March 8.6 14.8 455.2 7.9 15.0 457.0 
April 1.5 11.8 338.1 6.1 11.8 359.4 
May 7.2 4.8 168.1 15.7 4.8 208.9 
June 12.2 0.5 72.8 22.3 0.5 121.0 
July 12.0 0.6 73.0 21.9 0.6 120.3 
August 11.5 0.5 68.9 21.8 0.5 118.5 
Septemb 7.0 3.2 122.5 16.2 3.1 165.9 
October 1.1 10.9 311.5 1.1 10.5 299.3 
Novembe
r 

2.6 14.4 416.1 2.6 12.9 374.0 

Decembe
r 

11.4 15.4 485.5 9.2 14.4 446.3 

 
101.1 106.0 3454.1 150.4 101.8 3572.1 

 

Table 6. Variation of energy mix, primary energy factor and CO2 emission factor for electricity (Sweden, 2022 
[3]) 

 

Biomass 

[-] 

Hydro 

[-] 

Nuclear 

[-] 

Wind 

[-] 

Solar 

[-] 

Wel PEF 

[-] 

Wel CO2 
emission 

[g/kWh] 

January 5.9% 44.2% 27.0% 22.9% 0.0% 2.12 30 

February 5.9% 40.8% 29.3% 23.9% 0.1% 2.12 30 

March 6.6% 39.1% 33.3% 20.6% 0.4% 2.19 31 

April 6.3% 42.9% 33.6% 16.5% 0.7% 2.19 31 

May 5.1% 41.8% 30.2% 21.9% 1.0% 1.98 28 

June 3.6% 47.1% 32.1% 16.0% 1.2% 1.84 26 

July 2.7% 45.3% 32.9% 18.0% 1.1% 1.70 24 

August 3.0% 46.6% 34.1% 15.3% 1.0% 1.70 24 

Septemb 4.2% 50.8% 29.0% 15.4% 0.6% 1.91 27 

October 4.1% 38.7% 30.6% 26.4% 0.2% 1.77 25 

Novemb 5.6% 46.8% 30.0% 17.6% 0.0% 2.12 30 

Decemb 8.1% 44.2% 26.9% 20.8% 0.0% 2.48 35 
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Table 7. Hypothetical variation primary energy factor and CO2 emission factor for Helsingborg’s district 
heating 

 
DH PEF 

[-] 

DH CO2 emission 

[g/kWh] 

January 0.11 7.20 

February 0.11 7.20 

March 0.11 7.20 

April 0.04 2.40 

May 0.04 2.40 

June 0.04 2.40 

July 0.04 2.40 

August 0.04 2.40 

September 0.04 2.40 

October 0.11 7.20 

November 0.11 7.20 

December 0.11 7.20 

 

The above analysis considers annual average values for the primary energy and CO2 emission 
factors. In reality, these change over the year because the energy mix varies. Table 6 shows the 
variation of the energy mix, the primary energy factor and the CO2 emission factor for electricity in 
Sweden for the year 2022. 

The monthly values of primary energy and CO2 emission factors are not available for Helsingborg’s, 
DHN, however, it is reasonable to assume that they would be higher in cooler months and lower 
in warmer months. This is due to the excess of renewable energy sources (RES) and lower loads in 
warmer months, which reduce the need for fossil-fuelled generators. To consider this scenario the 
primary energy and CO2 emission factors were considered three times higher in the cooler months 
if compared to the warmer months, keeping the same annual average value (see Table 7). 

The primary energy and CO2 emissions were recalculated for the Tornet Energy Centre considering 
these new monthly values, and the updated results reported in Table 8 and 9. 

Since both the thermal energy from district heating and the electrical energy consumption are 
mostly concentrated in the cooler months, the updated values for primary energy and CO2 
emission factors result in higher annual primary energy consumption and CO2 emissions 
compared to the previous scenario. However, it is noticeable that with these updated values, the 
primary energy consumption and CO2 emissions are lower when the BTES is charged with district 
heating during summer, compared to when the BTES is not charged. 
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Table 8. Primary energy consumption of the system without BTES charging and with BTES charging (20kW 
from April 1st to September 30th) with the new monthly data for primary energy factor 

 Qth_DH = 0kW Qth_DH = 20kW (1st April – 30th 
September)  

Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

Primary 
energy 
[MWh] 

Thermal 
energy from 

DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

Primary 
energy 
[MWh] 

January 15.4 14.5 32.5 15.0 13.6 30.6 
February 10.6 14.7 32.3 10.6 14.2 31.2 
March 8.6 14.8 33.4 7.9 15.0 33.7 
April 1.5 11.8 26.0 6.1 11.8 26.1 
May 7.2 4.8 10.1 15.7 4.8 10.9 
June 12.2 0.5 2.0 22.3 0.5 2.9 
July 12.0 0.6 2.0 21.9 0.6 2.9 
August 11.5 0.5 1.9 21.8 0.5 2.8 
Septemb 7.0 3.2 6.7 16.2 3.1 7.5 
October 1.1 10.9 19.5 1.1 10.5 18.7 
Novemb 2.6 14.4 30.9 2.6 12.9 27.7 
Decemb 11.4 15.4 39.3 9.2 14.4 36.6  

101.1 106.0 236.5 150.4 101.8 231.4 
 

Table 9. CO2 emissions of the system without BTES charging and with BTES charging (20kW from April 1st to 
September 30th) with the new monthly data for CO2 emission factor 

 Qth_DH = 0kW Qth_DH = 20kW (1st April – 30th 
September)  

Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

CO2 
emissions 

[kg] 

Thermal 
energy 

from DH 
[MWh] 

Electrical 
energy 

consumption 
[MWh] 

CO2 
emissions 

[kg] 

January 15.4 14.5 546.6 15.0 13.6 516.7 
February 10.6 14.7 516.9 10.6 14.2 501.7 
March 8.6 14.8 520.2 7.9 15.0 520.8 
April 1.5 11.8 369.8 6.1 11.8 380.1 
May 7.2 4.8 150.9 15.7 4.8 171.2 
June 12.2 0.5 42.4 22.3 0.5 66.5 
July 12.0 0.6 42.0 21.9 0.6 65.7 
August 11.5 0.5 39.3 21.8 0.5 64.1 
Septemb 7.0 3.2 102.5 16.2 3.1 123.9 
October 1.1 10.9 281.3 1.1 10.5 270.5 
Novemb 2.6 14.4 451.1 2.6 12.9 406.0 
Decemb 11.4 15.4 620.6 9.2 14.4 569.0  

101.1 106.0 3683.5 150.4 101.8 3656.1 
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3.5 Lessons learned 

The above assessment brought to the following key takeaways: 

• Thermal energy storage tank and borehole thermal energy storage: The incorporation of 
these components provides substantial benefits in balancing supply and demand by storing 
excess thermal energy during low-demand periods and utilizing it during peak demand.  

• Advanced monitoring and control system: The deployment of a sophisticated monitoring 
and control system, incorporating sensors, programmable logic controllers, and a SCADA 
system, ensures optimal performance and reliability. This system improves energy efficiency 
and user comfort, while also supporting fault detection and diagnostics, enabling proactive 
maintenance and system optimisation. 

• BTES loading strategy: Different control strategies could be used to charge the BTES during 
summer. With high thermal power and short charging periods, the stored energy is not 
sufficient to charge the BTES completely because the temperature at the outlet of the BTES 
exceeds the imposed limit very often. Exchanging 20kW between the DH and the BTES from 
April to September, limiting the BTES outlet temperature at 15°C, it is possible to store enough 
energy in the BTES to cover the energy extraction during the heating season. 

• Cost savings: This charging strategy allows to reduce the electricity consumption over the 
years. At the same time more energy should be imported from district heating to charge the 
BTES. After 10 years the electricity consumption is 4% lower but the district heating 
consumption is 33% higher. Considering a 10-years span, to reach the financial breakeven the 
district heating price between April and September cannot exceed 8 €/MWh. 

• Primary Energy savings: From an energetic point of view, charging of the BTES has a positive 
impact if the ratio between the primary energy factor of electricity and the primary energy 
factor of district heating is higher than the ratio between the energy taken from district heating 
to charge the BTES and the electrical energy savings. 

𝑃𝐸𝐹𝑊𝑒𝑙

𝑃𝐸𝐹𝐷𝐻
 ≥  

∆𝑄𝑡ℎ_𝐷𝐻

∆𝑊𝑒𝑙
 

• CO2 emissions savings: The same reasoning is valid for the environmental point of view. To 
have a positive impact, the ratio between the CO2 emission factors of electricity and district 
heating should higher than the ratio between the energy taken from district heating to charge 
the BTES and the electrical energy savings. 

𝐶𝑂2𝑊𝑒𝑙

𝐶𝑂2𝐷𝐻
 ≥  

∆𝑄𝑡ℎ_𝐷𝐻

∆𝑊𝑒𝑙
 

• Boreholes as a storage: Overall, boreholes can be used as a storage under prescribed 
conditions. However, system control must be elaborated specifically and in collaboration with 
DH and electric grid authorities, based on variable primary energy use and CO2 emissions 
associated to the energy vectors. Additionally, specific vectors’ prices must be set at energy 
system level, reflecting the renewable energy content in the specific vector and period of the 
year. 

We conducted a breakeven assessment using informed assumptions for district heating energy 
prices and primary energy factors, which yielded only marginal benefits for the energy system 
overall. To enhance performance, a more detailed analysis at the hourly level is necessary, along 
with implementing active energy centre control. This approach would better leverage the system's 
flexibility and maximise benefits at the energy system level.  
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4 La Seyne-sur-Mer (DALKIA-EDF) 

4.1 Description of the demonstration site 

The demonstration site located in La Seyne-sur-Mer is a DHC network operated at different 
temperature levels to accommodate different needs encountered along the expansion. The DHC 
network is operational since 2008, while DALKIA took over ownership and management starting 
2019. The network was extended along the project elaboration, as shown in the map of Figure 25, 
and the number of customers raised from 4 to 14 in 2024. 

 
Figure 25: Expansion at the demonstration site in La Seyne-sur-Mer. 

The neutral-temperature DHCN initially set up uses seawater as energy source and sink, and allows 
to cover both heating and cooling needs, as it is operated between 13-24°C, the temperature 
varying over the year according to the seawater temperature and the extent of heating and cooling, 
partially loads balancing out over the network. The buildings connected to this network are set up 
with substations exploiting water-to-water heat pumps to draw or reject thermal energy from/into 
the network.  

The networks stemming from the core one are conceived as semi-decentralised ones, as 
substations integrating large HPs connect the extensions, as represented in Figure 26. Depending 
on the energy uses of the buildings integrated in the subnetworks, those can be operated in 
heating mode only or provide both heating and cooling. 

While SH and, eventually, SC loads are consistently covered by the DHCN, DHW preparation is 
addressed occasionally. In most cases, the secondary network operator ensures the DHW 
preparation via existing or refurbished means. In 3 substations, gas boilers are still present and 
falling under the public delegation of service contract of DALKIA and are used basically as back-up: 
in HLM PRESENTATION (residential building) gas in used as back-up or when the gas is cheaper 
than electricity, taking COP of the systems into consideration; in School Malsert gas is only used as 
back-up; in School Jaurès gas is used for heating and DHW as HPs are sub-dimensioned and do not 
reach the needed set temperature, and are thus used for preheating the return flow of the boiler. 
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Figure 26: Overview of the technologies that will be implemented at the demo case of Toulon. 

4.1.1 Objectives of the demonstration activity 

The project involves two partners: DALKIA, who owns and manages the DHCN, and EDF who 
developed the advanced control tools and implemented them in DALKIA’s platforms. Overall, the 
project aimed to improve the energy efficiency of the DHCN through new equipment installation 
and advanced control strategies integration. Particularly, the following objectives have been 
pursued: 

• Replacement of the seawater filters and installation of variable speed pumps at the central 
pumping station in order to reduce flow, raise the temperature difference between supply 
and return temperature, hence lower electricity consumptions overall; 

• Upgrade of the PLCs and the functional analysis implemented at the central pumping station 
and all customer substations. These have been improved continuously along the project 
elaboration, thanks to the feedback received while modelling or simulating the network 
substations for forecast, optimisation or simulation purposes; 

• Establishment of a reliable 4G communication link between substations and the SCADA 
system, along with an upgrade of the entire DALKIA’s ICT infrastructure to enhance the 
reliability and stability of data flows; 

• Development and deployment of a centralised, advanced supervision and control system 
based on model predictive based optimisation techniques. 

4.2 Formulation of the control problem 

Neutral-temperature DHCNs distributing thermal energy with a low temperature difference 
between supply and return pipe (i.e., T=10-15°C), require particular attention to minimising 
pumping costs both for sourcing and distributing energy, as these can considerably affect the 
overall operation costs. Similarly, management strategies are needed to reduce the electricity costs 
associated with operating HPs that interface the DHCN with customers and connect different 
branches of the network. 

These matters can be tackled with supply temperatures and thermal storages management 
strategies that adapt to the specific context, climate and seasonal operating conditions, benefitting 
of the “best” combinations of RE (both thermal and electric) and Waste Heat encountered: network 
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temperatures can be adapted based on the ratio between heating and cooling loads insisting on 
the system; supply temperature can slide down when an excess of renewable electricity is available 
to run heat pumps covering thermal loads and/or charging thermal storages. Conversely, heat 
stored at higher temperatures is more effectively utilised to cover loads during peak hours on the 
electric grid. 

If such an active management would have been unbearable 5 to 10 years ago, digital hardware 
incrementally more affordable and control platforms based on AI that start proving reliable, 
started to be game changers. 

Due to the system's thermal and hydraulic inertia, active management cannot be performed using 
conventional feedback loop-based RBCs. Instead, it requires awareness of weather conditions and 
the ability to predict future loads on the network over an appropriate time horizon. To achieve this, 
EDF and Dalkia decided to implement an optimisation solution based on the MPC approach. 

The overall scope of the MPC development has been to reduce the OPEX of the DHCN, by reducing 
electricity expenditures. Specifically, the objectives pursued by developing and implementing the 
MPC solution in La Seyne-sur-Mer have been: 

• Validate the developed MPC in terms of forecasting and optimisation; 

• Balancing heating and cooling loads insisting on the DHCN as much as possible to reduce 
seawater pumping costs; 

• Delay the sea-water pumps start, letting the network deviate slightly in terms of temperature, 
when forecast/optimisation results show that it will re-equilibrate in the short term; 

• Using the network as a thermal energy storage itself, profiting of the thermal mass “freely” 
available, enabling to balance loads among clients. 

4.3 Description of the control implemented 

4.3.1 SCADA system 

The main metering and automation backbone of the network level has been realized based on a 
commercial system called “WIT”. The advantage of this solution compared to other market 
available systems is that it can be operated via ADSL 4G technology. The WIT solution chosen is 
called “READY Process” and being modular, enables the integration of different controllers in a 
hierarchical way, based on the number of connections to be handled. 

The complete system architecture is represented in Figure 27. It shows the base of the system - 
the installed WIT system - responsible for assuring the correct operation of the DHC network. This 
is interfaced by the Regional Control Centre, using the generated data for monitoring and other 
O&M services for DALKIA. On top of these, the DEMix platform, responsible for the advanced 
control implementation, communicates bidirectionally with the WIT system through the Regional 
Control Centre. 

The main supervision centre is located in the Armada-Santa Maria substation and is equipped with 
a “READY XL” controller (capable of handling up to 2500 connections), the pumping-station which 
has a “READY M” controller, while all other substations are equipped with “READY S” controllers. 

As can be evinced from Figure 27, between the upper smart control level and the automation 
system on-site, the data and order flow pass via the Regional Control Centre (RCC) of DALKIA. Key 
figures concerning the installed metering and automation equipment are: 
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• 11 WIT READY modules; 

• 330 data points measured every 10 min; 

• 10 thermal energy meters with remote reading; 

• 25 electric meters with remote reading: 16 installed for the project (9 smart meters and 7 
Socomec metering stations) and 9 smart meters; 

• 88 temperature sensors; 

• 1 “delta P” meter; 

• All heat pumps are controlled (i.e. temperature, pressure or alarms) via Modbus RTU and 
Bacnet MS/TP; 

• 10 V2V on the low-temperature loop– Modbus compatible valves, enabling to read the position 
and flow rate. 

 

The available historic data on heating/cooling power and energy values have been harmonized on 
by DALKIA and have been shared with EDF. In parallel, the raw data streaming from DALKIA’s 
Regional Control Centre towards EDF. 

 
Figure 27 – Simplified overall SCADA architecture for the smart control of the LSSM DHCN. Source: EDF.  
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4.3.2 Advanced Controls 

The smart control system developed is based on the platform under development in EDF, called 
DEMIX®, and uses a specific module called “DEMIX Conduite”. This is aimed to become a 
centralised platform for monitoring data acquisition, load forecasting, and optimising and 
dispatching production and storage units (24h ahead) at any DHCN operated by the EDF Group. 

The current development of DEMIX is based on the operation of traditional centralized networks 
(one centralized energy station), hence not fully adapted to handle a decentralized network as the 
one concerned in this project.  

Thermal loads forecast 

The first step towards a smart control system for a DHCN exploitation system is the capability to 
foresee load conditions. The module used for this in the DEMIX platform is the ForecastHeat® 
software developed by EDF. This software is based on AI algorithms, learning from past aggregated 
heating loads insisting on the DHN and weather information to forecast the future aggregated 
loads. It allows to identify the loads on different time horizons (day, week) and use the following 
input data:  

• weather data as can be retrieved from the services of Meteo France (forecasts or historic data); 

• site specific data as past consumptions or local outside temperature; 

• calendar data as time, day of the week or events related to specific periods of the year. 

 

 
Figure 28: schematic working principle of the DEMix platform: real-time data is pushed to the platform, 

using these data for load forecast and subsequent optimisation, sending back to the site the calculated set 
points. Source: DALKIA. 

Along the project elaboration this module has been upgraded to gather data from distributed 
substations and to forecast heating loads at the single customers. DALKIA has generated a 1-year 
dataset of heating and cooling loads, with 10 min time step for each thermal load at the substation 
level, and 14 forecast models have been set up and coupled with the DEMIX Conduite platform. 
These have been trained accordingly with the 1-year datasets (Figure 30). 

The work has been focused on setting up the system and ensuring data consistency and quality, 
resulting in reliable and accurate enough predictions. 
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Figure 29 : screen shot of the forecast modules modelled in DEMIX Conduite as by the new industrialized 
temp/flow configuration – red indicated heating forecast and blue the cooling forecast. Source: DALKIA. 

Additionally, cooling loads forecast capabilities have been implemented: cooling loads forecast 
needs additional information (predictors) compared to heating, e.g., calendar-related information 
and occupancy rates.  

Cooling loads are produced mostly at the biggest load integrated in the network, the Casino. A 
dialogue with the Casino operator has been launched and daily historic occupancy data of its main 
spaces (casino and restaurants) have been retrieved for several years. These have been used to 
test the forecast accuracy of the model and it has been shown that the model can be calibrated to 
the data and provide accurate forecast. Hence, expected occupancy rates have been entailed 
among the predictors time series used for forecast model training.  

 
Figure 30 : comparison of forecasted (orange) and real (blue) occupancy data of the Casino. As can be 

evinced, except singular outlier events, the forecast matches well the real data. Source: EDF.  

During the development process, additional predictors, e.g., wind speed, humidity, irradiation and 
other weather data sources have been explored. The model used has proven to be robust, with no 
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noticeable improvements observed. One potential area for enhancement identified is the use of 
different models or methodologies for the same prediction task. However, this approach cannot 
be pursued further, as it would significantly affect the requirements and usability for the end-user 
of the industrialized version of DEMIX. 

Optimisation module 

Forecasted data generated feed an optimisation tool aimed to retrieve the needed set points and 
dispatching plan for each system unit, over the chosen receding time horizon. EDF has developed 
a tool called Clevery®, designed to model and optimize the daily operations of multi-energy 
systems. This has been conceived to be a decision-making support tool during exploitation, 
exploring techno-economic criteria (as costs of assets or their coefficient of performance) for 
systems operation optimisation.  

Before the project began, the tool integrated a library of system components based on the MILP 
approach, allowing for the modelling of energy flows across the system. However, this approach 
has significant limitations in calculating temperatures, flow rates, and pressures, which are crucial 
in neutral-temperature DHCNs where the performance of distributed heat pumps and circulation 
pumps is strongly affected by these parameters. An optimisation solver operating under 
constrained conditions was used on the overall system model to minimise an objective function. 

 
Figure 31: Schematisation of the functioning principle of Clevery and visualisation of its physical modelling 

interface. Source: EDF. 

To overcome this limitation, upgrading the individual system component models was addressed 
as part of the project activities. Initial studies on the nonlinear optimisation of DHNs yielded 
inconclusive results due to convergence issues and very long computation times, making it 
impractical to study large-scale systems. This is because some fundamental physical equations, 
such as those for heat losses, are highly nonlinear and cannot be incorporated into a MILP model. 

To address this problem, an iterative process combining detailed simulation and optimisation was 
tested, as simplified in Figure 32. This process involves the following steps: 

• Initialisation: Boundary conditions are set. 

• Detailed Simulation: Performed using physical models of the system components, developed 
in Modelica and MixSysPro, to determine the current system dynamics. 
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• Optimisation: The output from the simulation serves as the input for the optimisation process, 
resulting in a scheduling strategy for managing the DHCN. 

 

If a convergence criterion is met (meaning the values of variables in the optimisation and 
simulation are very similar), the solution is accepted, even if it is likely suboptimal. If not, the 
optimised set points are used to initialise a new detailed simulation. This iterative process is 
repeated until convergence occurs for the agreed control variables, as seen in Figure 33. 

  
Figure 32: Schematisation of the iterative method proposed. Source: EDF. 

 
Figure 33: Example of convergence of the iterative method. Source: EDF. 

The process described is complex and requires the implementation and calibration of a detailed 
physical model of the system. The objective of the project was to develop a generic framework to 
model and optimise the operation of the DHCN without requiring extensive preparation work. 

The modelling of the DHCN’s components, particularly heat pumps, has been adapted from a 
“generic behaviour” to the specific hardware installed on site, resulting in more realistic modelling. 
The interface between the DEMIX platform and the new physical module is developed in a Python 
framework. This interface was initially tested on a simplified generic network model and then 
applied to the complete DHC network of LSSM under operational conditions, using the model 
developed in Dymola-Modelica. 
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The advantage of Dymola-Modelica-based modelling is that the assets’ behaviours are described 
as systems of physical equations, whether linear or not, and the system simulation is solved 
depending on the given simulation environment and its temporal or physical constraints. This 
approach maintains a white-box methodology, preserving the cause-and-effect relationships and 
enabling the explanation of achieved results, which cannot be ensured in grey or black-box 
approaches. This method has indeed enabled the identification of several faults or malfunctions in 
terms of operation, design, or control in the DHCN, through comparisons of real data with forecast 
and optimisation results. 

 
Figure 34 – Example of data output from the optimisation comparison – in this screenshot, the model 

outputs are compared to actual operation conditions considering the network temperatures at the 
customer side (delivery/return). As in this case, whilst the COP of individual HP might suffer for some 

degradation, the overall DHCN’s electricity demand is lowered, as less pumping on the network side is 
needed. Source: EDF. 

For what concerns optimisation techniques, the project, along with the dedicated organised 
exchanges and workshops among partners, has enabled a shift from a linear approach to a non-
linear one. It is important to consider that previous solvers were linear, necessitating the 
linearisation of the entire DHCN, a very time-consuming process that reduces model accuracy. To 
address this, "mixed integer linear" solvers (MILP) were compared to more computationally 
intensive "mixed integer non-linear" solvers (MINLP), which account for the non-linear behaviours 
in the system. 

Table 10 : Summary of generic results from the comparison between the linear and non-linear solvers. 
Source: EDF 

 Nonlinear (MINLP) – Knitro solver Linear (MILP) – Xpress Solver 

Modelling 
+ - - -  

All equations must be linearized 

Readability 
+ 
Equations can be directly transposed from 
the physical models 

- 

Calculation 
speed 

+ + 
Less than 1 min in average for 24h  

- - 
The optimisation has difficulties to prove that 
the « best solution » has been achieved  

Reliability of 
results 

- 
Problems with local minima, partially solved 
by multi-starts 

+ 
Gaps are sometimes important, not enabling 
to guarantee a solution 

EDF 
knowledge 

on the 
software 

- 
Work in progress! 

+ + 
Much experience on the subject 
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The comparison accounted for output quality, programming complexity, calculation duration and 
associated costs. Solvers vary widely in price and a cost-benefit evaluation (considering software 
license costs and benefits in terms of system efficiency and performance) is crucial for the 
replication and industrialisation plan (see Table 10). 

The results of this work have been shared with EDF and DALKIA, who decided to adopt the non-
linear/MINLP optimisation due to its simplicity of implementation and efficiency. The 
Modelica/MixSysPro/DEMix Conception models include two different system models: one in 
Dymola-Modelica and one in a MINLP formulation. The latter is challenging to extend to other 
networks and industrialise in a generic framework. One of the main advantages of the chosen 
approach is that using a non-linear solver eliminates the need for linearising physical models, while 
providing robust results in negligible time. 

This new MINLP formulation led to a complete overhaul of the functional and technical 
requirements for the DEMix Conduite platform and the optimisation module. Once verified, these 
enhancements from the temperature/flow optimisation are transferred to the industrialised 
platform of DEMix Conduite, along with new requirements for human-machine interfaces (HMI) 
needed for additional monitoring of the flow/temperature approach (as shown in Figure 40, a 
screenshot of the newly developed GUI). Meanwhile, the optimisation core is still undergoing 
verification and continuous improvement as the team gains knowledge in running a non-linear 
optimisation environment. The solver itself (Knitro-Solver) is also being updated to become more 
efficient and reliable. 

 
Figure 35 : architecture of the DEMix platform, as commissioned for the experimentation. Source: Dalkia. 

4.4 Assessment of the control performance 

Thermal loads forecast 

Acceptable results have been achieved for the overall load forecast error, maintaining an average 
below 12% on an annual basis. However, results vary significantly among substations, with some 
exhibiting unpredictable or chaotic behaviour. Thanks to the commissioning work of DEMix, some 
of these erratic behaviours could be corrected, as they were related to metering or data 
aggregation issues, or specificities of the secondary network regulation or system design. 
ForecastHeat has been installed on the EDF server since November 2022, as shown in Figure 35. 
Some examples of good prediction are shown in Figure 36 and Figure 37; and some examples of 
bad forecasting are shown in Figure 38 and Figure 39. 
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Figure 36 : Comparison of forecast (pink) and real (red) hot consumption of the INSPE substation, which is a 

low-demand substation. Source: EDF. 

 
Figure 37 : Comparison of forecast (pink) and real (red) cold consumption of the Casino, which is a high-

demand substation. Source: EDF. 

 
Figure 38 : Comparison of forecast (pink) and real (red) hot consumption of the PM3 substation. Example of 

bad forecasting: unpredictable consumption peak. Source: EDF. 
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Figure 39 : Comparison of forecast (pink) and real (red) hot consumption of the Armada substation. Example 

of bad forecasting: abrupt changes in demand behaviour. Source: EDF. 

In terms of both heating and cooling forecasts, the overall forecasting capabilities are appropriate 
for the optimisation problem formulation. Indeed, one of the valuable, yet unexpected, 
repercussions of the forecast-related control is that forecast verification has prompted a re-
evaluation of the observed behaviours of assets. This has led to significant improvements in system 
operation (SCADA) and related automation. More details on this are provided in the following 
sections. 

Optimisation module 

RewardHeat has enabled EDF and DALKIA to gain a much deeper understanding of the 
optimisation of a low-temperature (LT) network and to develop the DEMix platform in its various 
components (hypervision, forecast, optimisation). For this experimentation, the optimisation part 
of the software was initially developed in Python due to its simplicity of implementation. This is 
currently being transferred to a more industrialised version in C++, as shown in the following 
figures. This work is still in progress and will continue, among other initiatives, in the European 
project Senergy-Nets. For larger replication, different specific assets and related modules/models, 
such as storage, still need development. 

The original DEMix platform has been expanded in terms of technical and functional requirements 
and industrialised for the hypervision of a targeted asset, as shown below. The new 
temperature/flow optimisation interface enables navigation of individual assets and provides 
much richer monitoring of the assets, related to the decentralised approach implemented. 

Specifically for the project, besides the Grafana interface developed to monitor all individual 
variables of the optimisation module, a dedicated section has been developed in DEMix to follow 
the orders sent by DEMix to the local SCADA system of LSSM (loop temperature setpoint). This led 
to the development of specific visuals to compare the sent setpoints with the values applied on 
site by the SCADA for the operator of the DHCN (see Figure 41). 
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Figure 40 : scrren shot of the main hypervision view of the industrialized DEMix platform and adapted the 

needs of the temp/flow optimisation developments as implemented first in LSSM. Source: DALKIA.  

 

 
Figure 41: as by the new industrialized temp/flow configuration, in order to follow the loop temperature 

setpoint sent by Clevery, specific visuals have been integrated to compare sent setpoints, with the values 
applied on site by the SCADA. Source: DALKIA. 
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Independently of the optimisation environment, the objective function is the operational 
optimisation of the network. Preliminary commissioning campaigns have been performed to 
qualify and quantify the optimisation tool. To this end, different approaches have been simulated 
and compared, i.e.:  

• Minimisation of total electricity consumption (in kWh) compared to minimisation of the total 
electricity costs (in €): a result of this comparison is shown for the Lylo-Marine substation in 
the figure below, where prices at the pumping station are higher than prices at the substation. 
When minimising the total electricity cost in €, the solution proposed by Clevery consists in 
increasing the electrical power of the HP (even if this means reducing the COP slightly) and 
reducing the flow rate between the substation and the main loop. However, this conclusion 
cannot be generalised, as it depends on prices and consumption at each time step. 

• Maximisation of the overall HPs’ efficiency (COP) compared to minimisation of the electricity 
consumption of head-pumps: the figure below shows an example of this comparison where 
maximising the overall HP’s efficiency results in a higher flow rate in the network loop; 

• Minimisation of electrical power demand to identify power subscription reduction potential 
(peak shaving capability): as shown in the figure below, this optimisation potential is limited 
under the given technical and operational constrains, hence is not been pursued.  

 

These different objective functions have been tested offline, and it has been finally decided to 
adopt minimizing the total electricity costs in €.  

 

 
Figure 42 : Minimisation of total electricity consumption in kWh (blue) compared to minimisation of the total 

electricity costs in € (orange) for the Lylo-Marine substation. Source: EDF. 
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Figure 43 Maximisation of the overall HPs’ efficiency (left) compared to minimisation of the electricity 

consumption of the pumping station (right). Source: EDF. 

 

 
Figure 44 : Minimisation of electrical power demand (orange) compared to power subscribed for LSSM 

network (blue). Source: EDF. 

 

With respect to the DEMix platform, and specifically the optimisation module (Clevery), the main 
objective achieved is that it has been tested in an operational real environment (TRL 6). The 
commissioning has enabled DALKIA to integrate the tool into daily operations, and the system has 
proven to be reliable, with the operator not needing to intervene in its operation, thus fully trusting 
the implemented solution. 
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As described, the system has been consistently enhanced in its optimisation functionalities, moving 
from a MILP to a MINLP approach, enabling the temperature/flow optimisation of the LSSM DHCN. 
The system is continuously being made more reliable, allowing for the expansion of modelling 
towards more accurate models/modules.  

As of today, the optimisation module has enabled efficient operation of the DHCN of LSSM under 
real conditions. The DEMix platform has thus operated the main electricity-intensive asset, the 
pumping station, by controlling temperature setpoints and flow of the primary LT loop. Control of 
setpoints for individual substations has not been possible due to contractual and technical 
limitations. However, the optimisation problem considers these aspects and could, under different 
conditions, be tested to improve operations by leveraging control of both the LT loop and 
substations (e.g., HPs) relevant setpoints. This operation mode has the advantage of incurring 
relatively lower risks of impacting substations’ operations while maximising the control’s impact on 
the overall DHCN. 

 
Figure 45 : scheme resuming the COP assessment per substation: green ones have COP above 4, yellow 

between 2,85<>4 and light red when below 2,85. The latter have been prioritized. Source: DALKIA.  

DALKIA has been following the setpoints since February 2024 without any events or problems. 
Nevertheless, it is not possible to have a clear comparison between two similar periods (with and 
without optimisation) based solely on metering data, due to two main reasons: 

• The DHCN has undergone many significant modifications of its assets and related controls, 
such as closing a main valve, removing some heat exchangers between the main loop and the 
HPs or coolers, adding an exchanger in other cases, and equipping head pumps with variable 
speed drives. These modifications have had a positive impact in terms of energy efficiency and 
COP but have made a proper comparison based on metered data impossible, allowing only a 
simulation-based approach for defining a reference scenario. 

• During the project lifetime, individual sensors and metering equipment have shown to not 
work properly, with some parts just recently undergoing replacement or repair. More 
particularly, energy sensors, especially for heat, are very sensitive and prone to errors (e.g., a 
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temperature sensor not placed at its optimal location), showing consistent deviations between 
observed and expected behaviour. Thus, these measurements are not reliable and cannot be 
used for a fair comparison. 

4.5 Lessons learned  

The main learning out of the described work are: 

• Predictive models // ergonomics: A trade-off between model diversity/complexity and 
forecast accuracy had to be integrated in the objectives of the forecast: considering the 
industrialisation of the DEMIX platform, a general end-user is assumed as being a non-
specialist of forecast methods, forcing to reduce the variety/choice of available forecast 
models/methodologies, sometimes against possible accuracy loss of the forecast for specific 
substations. Some forecast might be improved, but the choice can’t be automatized (with the 
current given constrains). 

• Predictive models // Post-COVID situation: The COVID situation has made historical data 
almost unusable and delayed the validation work of the forecast. The implemented self-
learning algorithms, need yearly timeframe for the training and are considerably impacted by 
such outlier events. Forecast methods, needing shorter timeframes (few month) could be 
better adapted to the problem at hand (see following point). The accuracy of the forecast 
under such time constrain should be investigated.  

• Predictive models // new assets : New substations do not have data to learn from and thus, 
new substations are barely predictable in the first year of exploitation with the implemented 
method. Shorter time-frame applications could enhance the commissioning time a full 
forecast and optimisation platform as that developed for LSSM.  

• Predictive models // predictors choice: More predictors/data does not equal to greater 
accuracy and depending on the methods implemented, such predictors are already, implicitly, 
entailed in the load data and well considered by the implemented forecast method. This is the 
case observed in the methodology deployed for LSSM, where no enhancement has been 
achieved. 

• Predictive models // data reliability: The model must consider the fact that the data is not 
always complete as data streams might have outages and be able to work despite data-gaps 
(usually such accidents could be solved in a matter of hours). This has been taken into 
consideration for the developed forecast module, able to bridge several hours of data outage. 
Nevertheless, no solutions are at hand if the outage concerns one or several days of data 
stream outage and thus, a DHCN running MPC platform has to have a back-up solution as in 
the LSSM case, where the SCADA system takes over the operation in case of missing or 
impossible outputs from the MPC platform. 

• Predictive models // local conditions: Local weather correction methods must be 
integrated; it has been shown that the implemented forecast module is able to correct 
recurrent weather forecast deviations compared to local conditions in a correct way. This has 
been tested against different temperature sources, showing that the model did correct such 
deviations in an acceptable manner.   

• Predictive models // results accuracy: Acceptable results have been achieved for the overall 
load forecast error, staying below <12% in average on an annual basis, but results vary greatly 
among substations, even showing substations that may behave unpredictably or with chaotic 
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behaviour. Thanks to the commissioning work of DEMIX, part of such erratic behaviours could 
be corrected as related to metering or data aggregation issues or related to specificities of the 
secondary network regulation or system design.  

• Optimisation // white box approach: Thanks to the fact that the model does not work as 
black-box, but is based on physical models, cause-effects can be identified and explained, and 
corrective measures more easily identified than on a grey/black-box approach. This has been 
shown to be very helpful for the commissioning process, enabling indeed to have a two-way 
improvement on the site. With the latter, is meant that not only the model could be verified 
against real data, but real data be challenged against consistency and on-site/implemented 
operational modes questioned.  

• Optimisation // technical control constrains: the already implemented control and SCADA, 
is constraining the optimisation freedom from the forecast/optimisation platform. Indeed, a 
new mode of operating such LT DHCN should be revised, so to be able to implement 
regulation orders or specific set points for different assets, which are otherwise not possible 
to be implemented today.  

• Optimisation // Regulatory/contractual constrains: another lesson learned is the close link 
between optimisation freedom and contractual or regulatory constraints. Indeed, regulation 
imposes a max limitation on the sea water injection, major determinant for the exploitation 
efficiency of the DHCN during summertime. Equally, contractual constrain with secondary 
network operators, at the building interface, make certain operation strategies not feasible 
(i.e. fixed set point for delivered temperature).  

• Optimisation // System design constrains: the current “classic” design solution of 
substations, where a heat exchanger hydraulically isolates HP and other generation/storage 
assets from the primary network, is not well adapted for the system at hand. It is suggested, 
to replace the heat exchanger by a buffer tank, which would enable to have peak 
shifting/shading capacities, thanks to the intermediate storage. This specific design solution 
has however not been tested yet. 

• Optimisation // Non-linear solvers: despite the fact that the integration of non-linear solvers 
has enabled to rethink the whole optimisation approach, these are relatively new and still 
under improvement as technology/service. If on the one hand, the linearisation of the system 
is yet not needed anymore, solvers can’t handle the whole physical complexity at once on the 
other. Trade-offs must be done, between the level of detail of the physical description of assets 
or processes and the convergence time or number of unfeasible solutions resulting from the 
optimisation. 

• Optimisation // industrialisation: the solution tested on site was developed in Python, for 
its simplicity of implementation. An industrialisation in C++ is currently under way, with many 
difficulties arising from the adaptability of the equations, i.e. equations were fitted for the 
LSSM test-case, but may not be perfectly adapted for other networks (i.e. difficulties to 
converge). This replicability problem still needs to be addressed, and EDF and DALKIA will 
continue to work on it further on. 

• Design // ICT endowment and data reliability: for what concerns real-time operation, a 
fibre-optic wiring among substations and a central automation/control should be ensured. As 
in the case of LSSM, a 4G communication had to be implemented as only possible solution 
(against huge amount of CAPEX and related civil-works) as being the DHCN mostly existing and 
not equipped with a centralized automation. Such solution has proven not to be reliable 
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enough for a real-time platform, causing too long outages of communication of single assets, 
putting at stake the whole forecast/optimisation process. Despite many interventions and 
improvements implemented during the project, aiming at signal quality and stability 
improvements, the overall data stream reliability is not completely satisfying. A fibre-optic 
solution seems being yet the most reliable one. Solutions have to be found to fill data gaps. A 
fibre-optic solution appears to be the most reliable option. Additionally, solutions must be 
found to address data gaps. 
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5 Lund (E.ON) 

5.1 Description of the demonstration site 

The project area Medicon Village is a campus in Lund focused on medical research with more than 
2500 employees working for different companies. E.ON uses an ectogrid™ Neutral-Temperature 
Heating and Cooling Network to supply Medicon Village and three large apartment blocks. 

An ectogrid™ consists of conventional equipment, such as heat pumps, cooling machines, heat 
exchangers and piping. The innovation of the technology lies in the way these blocks are combined, 
enabling new hydraulic coupling allowing to achieve an automatic bidirectional heat exchange. 
Generation is mainly distributed, and excess energy from each building is used internally by heat 
recovery from the heat pumps, thus lowering the overall energy consumption in each building. The 
decentralized heat pumps and chillers in each building raise or lower the supplied temperatures 
to the levels that are specific to the building requirements, avoiding unnecessary energy 
consumption. 

 
Figure 46 – Overview of the Medicon Village ectogrid™ with the new substation highlighted in red. 

5.1.1 Objectives of the demonstration activity 

Within the REWARDHeat project, a new kind of decentralized generation unit has been developed 
and tested. The heat pumps are connected in a novel “transversal” way to simultaneously act as 
both heat pumps and cooling machines. Both the inlet and outlet temperatures are controlled and 
steered to optimize the functionality of the grid. 

This novel substation setup will have a significant impact on the potential for the overall system 
performance optimization. i.e. how the control of several buildings and substations in an ectogrid™ 
can be coordinated. To develop this knowledge and enable the dissemination of the results, 
numerous operational conditions and control strategies have been tested and evaluated, and 
control algorithms developed and implemented, leading to high replicability of the project results. 

Figure 47 shows the main energy flow principles of the novel substation whereas Figure 48 shows 
the P&ID, outlining the technical components. 
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5.2 Control problem formulation 

Considering that heating and cooling demands are most often not balanced, there are several 
control challenges related to how the substation is to be run: 

Meeting the demands for heating, domestic hot water and cooling 

Handling the rejection of excess heating or cooling to the ectogrid™ warm and cold pipes at desired 
temperatures 

Operating the heat pumps and adjacent equipment smoothly to avoid unnecessary wear and tear 

 

Thus, there are multiple setpoints that must be simultaneously tracked by the substation PLC/BMS 
controller to distribute water via different circulation pumps and valves. Going forward, it will be 
important to standardize the substation control logic to enable scaling of the solution. 

         
Figure 47 - Heat pump-based novel substation operation principle 

 

 
Figure 48 – Detailed P&ID of the substation developed  
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Additionally, different digital capabilities have been developed to unlock further values based on 
the cloud-based platform ectocloud™. These include: 

Monitoring the solution in detail and in near real-time 

Enable proper analysis through data aggregation and visualization such that evaluation of the 
substation energy performance is possible in both local and system-wide contexts 

Intelligent optimization of thermal demand, e.g., through demand-side management of building 
thermal loads based on price signals 

Inclusion of the novel substation into the overall steering of the ectogrid™ system, by adapting 
energy load forecasting to the novel substation configuration  

5.3 Description of the control implemented 

5.3.1 SCADA and Energy Analytics System 

The digital platform ectocloud™ is a control, optimization, and data acquisition platform for 
decentralized, sector-coupled energy systems. It utilizes modern technologies such as cloud and 
edge computing, machine learning and IoT communication. It is designed to efficiently connect and 
digitally structure distributed assets and provides tools for performance monitoring, asset 
operations and for data-driven energy optimization and control purposes. 

The connection of the building and substation to the ectocloud™ is facilitated through IoT 
technology with high resolution data obtained from meters and sensor. This includes an IoT 
gateway able to communicate with local PLC and BMS systems, which in turn gather data from 
hard-wired sensors, metering gateways and other underlying control systems such as ones built 
into the heat pumps. Additional data relating to weather forecasts and energy market day-ahead 
prices are integrated by cloud-to-cloud APIs. 

In terms of ectocloud™’s architecture, illustrated by Figure 49, the core backend acts as the main 
integration and data storage point, fetching data from different external sources like weather 
forecast data or energy market data. As mentioned, IoT gateways (“Energy Manager”) are used to 
interact with the physical energy systems via local PLCs or BMSs in near real-time, while machine 
learning services provide the computational tools necessary for advanced energy optimization use 
cases. 

The main purpose of the energy system visualization, exemplified in Figure 50,  is the operational 
supervision and energy analytics.  

Special formulation of the individual COP of heating and cooling had to be made such that the 
common electricity use was separated in a fair and representative way depending on the demand 
balance of the building and the amount of excess heating or cooling. An important consideration 
has been to make substations, regardless of exact design, comparable in how they are 
benchmarked. 

The system COP, which is an important metric, can thus be calculated as below for different time 
frames such a daily, monthly or yearly: 

𝐶𝑂𝑃𝑒𝑐𝑡𝑜 =
𝑄𝐻,𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 + 𝑄𝐶,𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝐸𝑖𝑛𝑝𝑢𝑡,𝑡𝑜𝑡𝑎𝑙

 

Other energy data-based KPIs aggregations are also provided to give an overview and drill-down 
user experience. 
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Figure 49 – ectocloud™ core architecture and its relationship with external services, local systems and 

hardware 
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Figure 50 – ectocloud™ analytics and user interface example 

5.3.2 Substation  

As described, the substation real-time control is implemented in the local control system to track 
multiple setpoints. The setpoints for the delivery of heating and cooling are provided from the 
building HVAC control system (BMS), whereas setpoints for the excess heating and cooling are set 
by ectocloud™, based on system-wide grid temperature considerations. 

Different controllers with specific tasks interact such that the combined heat pump run to meet 
the dominant demand and to distribute the excess energy back into the grid. These controllers are: 

Distribution controller (heating and cooling): Controls the mixing of flow such that the building 
demand is met, and that potential excess energy gets redistributed 

Production controller: Controls the heat pump compressor utilization such that the necessary 
forward temperatures on the condenser and evaporator sides are met (given by the building 
demand or excess energy rejection) 

Grid temperature controller: Controls pump and valve to make sure excess energy is injected to 
the grid at the desired temperature 

An illustrative diagram of the controllers interaction with the substation is shown in Figure 51. 

 
Figure 51 – Feedback loops acting collaboratively on the novel substation 

Controller Tuning 

To complement experience-based control tuning, more structured tuning strategies have been 
tested to create guidelines for how get satisfactory control performance. In addition, certain other 
factors influencing the control performance have also been documented, such as the sensor 
placement. 

To improve the overall tracking of temperature setpoints, strategies for tuning the controllers have 
been investigated and designed according to methods like Ziegler-Nichols and Lambda to calculate 
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appropriate PID control parameters. A step response experiment is conducted by running a 
manually defined control signal to identify process dead-time, time-constant and amplification of 
control signal to measurement response.  

Feed-forward Control 

Rather than just having the conventional feedback control architecture, a feed-forward component 
has been tested for substations, where disturbances originating from compressors starting or 
stopping in discrete steps caused short-term but high temperature deviations. The control 
architecture of feed-forward and feedback control is shown in Figure 52. 

As an indicator of cooling energy increase on the evaporator-side of the heat pumps, a compressor 
start signal was used to pre-emptively increase the flow, limiting the temperature impact of the 
sudden event of compressor start. 

 
Figure 52 – Feed-forward control loop concept where the disturbance indicator v is measured as a 

compressor start signal 

5.3.3 Advanced controls 

In addition to the substation basic control, different more advanced controls have been developed 
and tested including: 

Demand-side management of thermal loads based on day-ahead price signal 

Grid temperature control for enhanced ambient energy harvesting 

Control involving the main thermal storage in the grid with energy demand forecasting 

These advanced and system-wide control strategies act on top of the low-level control of each 
substation and asset and are provided by ectocloud™. 

Demand-side Management 

For the demand-side management, comfort-related heating loads have been connected and 
controlled, allowing ectocloud™ to influence the building space heating consumption. By 
considering day-ahead price signals and the thermal inertia of the building, the developed 
algorithm moves heat consumption from expensive hours to cheaper hours of the day. As the heat 
is generated by heat pumps, savings on electricity costs can be achieved without noticeable indoor 
climate impact. 

In Figure 53 the setpoint control and response of the main heating circuit of the building is shown 
together with the day-ahead market electricity price. As can be seen, the supply temperature is 
shifted up and down depending on the price that during these five days varies dramatically. 
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Energy Load Forecasting 

From the perspective of controlling and optimally balancing the grid, the novel substation has 
introduced a new method for deriving the net demand for heating and cooling. This change has 
impacted energy demand forecasting, which is a critical component for optimising all parts of the 
system, alongside models that describe the dynamics of energy source efficiency, thermal storage, 
and the distribution grid. The energy forecasting model uses machine learning trained on historical 
data to predict heating, cooling, and electricity consumption based on forecasted weather, time of 
day, and other factors. 

 
Figure 53 – Timeseries of supply and return temperatures from/to the substation during demand side 

management operation together with day-ahead price data (green line). The lighter red line is the calculated 
baseline temperature whereas the red is the actually controlled and optimized one. 

 

 
Figure 54 – Thermal load forecasting example timeseries with forecasted heat demand in red and actual 

value in purple.  
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As part of the system-wide optimisation, grid temperatures are determined by considering the 
temperature-dependent COP of the substations and energy sources, along with distribution losses 
or gains. Since all consumers are also producers in ectogrid™, the setpoints are sent to all 
connected systems to be adhered to by each of the local controllers. 

5.4 Assessment of the control performance 

Thanks to a continuous improvement and control tuning process, the performance of the novel 
substation control has reached a satisfactory state. Setpoints are tracked accurately without 
running machinery and equipment too aggressively, see Figure 55. 

 
Figure 55 – Substation supply temperature control set point shown in purple with measured value in red. 

Note that over a time-period average the setpoint is kept but the step-controlled compressor is not 
triggered to often as indicated by the heating power in grey.  

 

 
Figure 56 – The eed forward control  in action. As a compressor steps in (indicated by electrical power in 
grey), the control signal is immediately increased resulting in an increase in flow on the condenser side 

(purple). Thus, the temperature (blue) settles at around 8 °C without undershooting. 
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In substations where excessively low evaporator temperatures could occur due to compressor 
start-ups, decoupling the control logic into feedback and feed-forward control blocks has 
proven useful. This approach allows low temperatures to be sent back to the grid without triggering 
freeze protection stops, as the feed-forward controller pre-emptively increases the flow, see Figure 
56. 

Overall, standard approaches have been developed and documented to ensure they can be reused 
in future substation installations, both in terms of control logic and efficient installation and 
connection to the cloud for data acquisition. 

Regarding demand-side management control, significant load shifting has been performed over 
an extended period. The customer has been involved in the process and has not experienced 
notable changes in indoor comfort, demonstrating the effectiveness of building thermal inertia. At 
the same time, the potential for savings has been shown to be significant, assuming optimisation 
towards dynamic tariffs (day-ahead spot prices). 

Given the electricity price volatility, the cost-saving potential for the tested buildings is estimated 
to be up to around 20%, with only a limited impact on indoor temperature. The general potential 
of such optimisation depends on future price volatility, customer sensitivity, and the properties of 
the building (insulation and thermal mass). 

Example operation output of the demand-side management control is shown in Figure 57. 

 
Figure 57 – Example of space heating setpoint offset control in relation to Day-ahead electricity price 

The developed load forecasts for the novel substation and associated building have been 
generalised from previously used machine learning-based forecasting approaches, utilising 
historical data, weather forecast data, and temporal data as predictors. The model training shows 
promising results, consistent with the performance of models for other buildings at the site. 

The dominant predictor for heating demand was the 1-hour average outdoor temperature, with 
some weaker dependencies on the time of day also present. For cooling, multiple relevant 
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predictors were identified, mainly temporal ones such as the time of day and whether it is a 
weekday or weekend. 

 
Figure 58 – Predictors influencing heating (right) and cooling (left) load forecast 

The heating demand forecast model has reached the following performance: 

R2: 0.95 

RMSE: 11 kWh 

The cooling demand forecast model has reached the following performance: 

R2: 0.75 

RMSE: 4 kWh 

  



 

 

www.rewardheat.eu  Page 58 of 104 

5.5 Lessons learned 

There are multiple learnings and take-aways from the experience of introducing the novel 
substation into the ectogrid™ solution, including: 

• It is important to consider all levels of control, taking a bottom-up approach starting from 
the control systems working closest to the hardware and considering how one can build more 
sophisticated control logic and optimisation on top of that 

• Trying to apply different control tuning and other real-time control mechanisms such as 
feed-forward requires close collaboration with building automation contractors, especially for 
such sophisticated substations 

• Harmonizing and assimilating data from different types of substations so that variations 
can be handled seamlessly can be challenging, but important to enable digital standardisation 

• The potential of demand-side management can be significant in heat pump-based heating 
and cooling solutions, in the current times of price volatility 

• The approach for creating machine learning-based energy forecasts is not straight-
forward when it comes to the extent of modelling the interdependency of heating, cooling and 
electricity that exists in heat pump-based systems, which was exacerbated by the novel 
substation and the utilisation and effects of demand-side management 

• In cases with less representative data for the substation or building behaviour, such as when 
it is new and undergoing its early phases of commissioning, it could be useful to initially use 
forecasting methods that are less data-intensive and more adaptable to real-time 
conditions and events. 
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6 Palma de Mallorca (SAMPOL) 

6.1 Description of the demonstration site 

The Parc Bit power plant is a Combined Cooling, Heating, and Power (CCHP) facility that supplies 
electricity, heating, and chilled water to the Parc Bit Innovation Centre and the University of the 
Balearic Islands (UIB), through a district heating and cooling network. The plant generates hot 
water using a combination of CHP engines, a biomass boiler, solar thermal panels, and a fuel boiler. 
To meet cooling demands, the facility employs three conventional electric chillers and two 
absorption chillers. The absorption chiller and one of the electric chillers use water for cooling and 
share the same cooling towers, while the remaining electric chiller utilizes ambient air for cooling 
purposes. Heating and cooling can be stored in TES water tanks. 

 
Figure 59 Parc Bit Power Plant scheme 

The DHC was initially constructed in 2000, linking the CCHP plant to the office buildings within the 
Parc Bit complex via three branches. In 2002, the network underwent an expansion, adding 
another branch to connect with the university facilities, including student housing and the sports 
centre. Presently, the network services 25 different customers, providing either heating, cooling, 
or both. The customers on this network fall into three primary categories: office buildings, 
educational facilities, and specific usage buildings such as residential spaces, a swimming pool, and 
an IT room. The profiles vary considerably between workdays and weekends, adding complexity to 
the network management.  

The network consists of four branches of pre-insulated steel pipes. Each branch contains two pairs 
of pipes, i.e., supply and return. The total length of the district DHC network is approximately 4.6 
kilometres. 
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Figure 60 Parc Bit and UIB District Heating  and Cooling Network 

6.1.1 Objectives of the demonstration activity 

The demonstration aimed to enhance the operational efficiency and energy performance of the 
DHC network through the application of advanced control strategies and optimisation techniques 
in both the CCHP and the DHC network. The key objectives of this demonstration included mainly 
developing an advanced control solution for both the CCHP and the substations distributed along 
the network, aimed to maximise economic performance, minimise thermal losses, and optimise 
CHP-DHC system operations under varying demand conditions. 

6.2 Control problem formulation 

To effectively address the control problem cantered on the innovative substation, the following 
objectives have been outlined: 

• Enhancement of Control Systems: Upgrading PLCs and refining functional analysis at the 
central pumping station and customer substations. These systems were continuously 
improved based on feedback from network modelling and simulation, optimizing 
performance and energy use. 

• Optimisation of Substation Control: Installation of three-way valves with controllers at each 
substation aimed to precisely regulate the flow of heating and cooling water, optimizing the 
temperature differential between supply and return lines. These controllers dynamically 
adjust the valves based on real-time demand, improving the efficiency of heat transfer and 
reducing energy consumption. This setup allowed for better control over the distribution 
network, ensuring that the right amount of energy is delivered where and when it is needed, 
thereby minimizing waste and lowering overall electricity use. 
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• DHC Demand Forecasting: The goal was to forecast demand for the next six hours in 15-
minute intervals using an LSTM (Long Short-Term Memory) model. This model utilises inputs 
such as historical ambient and wet bulb temperatures, along with sinusoidal variables to 
capture seasonal information, enabling accurate energy demand forecasting and efficient 
management of the DHC and TES systems. Based on this, a better integration between TES 
systems at the power plant and CCHP was achieved, aimed to improve the flexible 
management of the plant, and allowing for strategic scheduling and operation to optimise 
economic and energy efficiency while reducing emissions.  

• Deployment of Advanced Control Systems: A centralised control system using 
reinforcement learning (RL) techniques was implemented to optimise the next six hours of 
operation by adjusting the output temperature of TES to the DHC. The RL agent employs a 
combination of model-based algorithms and deep learning to make decisions that maximise 
the system’s economic performance, minimise thermal losses, and optimise the operation of 
CHP-DHC systems under varying demand conditions. The following instruments were 
implemented:  

• Platform Development: Develop a comprehensive platform that integrates all components 
required for the Digital Twin’s operation. This includes processes from data acquisition and 
processing (data munging) to simulation optimisation and live evaluation of the proposed 
control strategies. 

• Data Acquisition: Implement a data acquisition API that incorporates connectors to PLCs, 
weather APIs, PID controllers, and other essential data sources. This API ensures that all 
necessary data is collected and made available to the Digital Twin for seamless operation. 

• Control Operations: Establish control operations that define the scheduling of simulations 
based on the inputs allowed by the control strategy. The control strategy in this case involves 
optimising the power plant’s operation based on the startup schedule of machinery and the 
accumulation in district heating tanks. 

• Model Retraining: Integrate a continuous model retraining process to ensure that the 
machine learning models remain accurate and effective. This involves regularly updating the 
models with new data to adapt to changes in system behaviour, ensuring that the control 
strategies are always based on the most current and relevant information. 

• Live Operation Analysis: Design the evaluation process to run in real-time, with results 
visualised through an interface. This allows for the detection of any malfunctions in the 
simulation, enabling a quick switch to stable operation while the issue is analysed and 
resolved. 

6.3 Description of the control implemented 

6.3.1 Digital Twin Platform 

The Digital Twin platform has been developed with a strong emphasis on replicability and 
scalability, ensuring that all components are containerized using Docker to facilitate seamless 
deployment across various servers. This modular architecture is bifurcated into edge and cloud 
components, which are delineated in the system's schematic by dashed line squares. This design 
enables continuous local operations, even in scenarios where network connectivity is 
compromised, a critical requirement for installations in remote or geographically dispersed 
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locations. While the Parc Bit site benefits from a reliable connection to Sampol’s central office, this 
capability ensures robust performance across diverse operational environments. 

At the edge, the platform is tasked with data acquisition from the Combined Heat and Power (CHP) 
plant and the District Heating and Cooling (DHC) network. This is accomplished through an API that 
interfaces with Programmable Logic Controllers (PLCs) and Supervisory Control and Data 
Acquisition (SCADA) systems, thus ensuring comprehensive data capture. The extracted data is 
subsequently channelled into a Kafka broker, a widely utilized messaging platform in industrial 
applications, which efficiently manages data streams. These data streams are then directed to two 
distinct databases: a cloud-based repository that archives the complete historical dataset and an 
edge-based database with a two-week retention policy, designed to support real-time operational 
needs while minimizing storage demands on edge devices. 

In the cloud, the platform focuses on the continuous training and updating of machine learning 
models that simulate the operational dynamics of the CHP and DHC systems. This process, known 
as Machine Learning Operations (MLOps), is orchestrated by an Extract, Transform, Load (ETL) 
platform, specifically Apache Airflow. Airflow is employed to schedule tasks, manage dependencies 
across services, and perform data backfills to mitigate any data gaps resulting from service 
disruptions. It also oversees the iterative training of machine learning models, systematically 
comparing new models against existing ones to ensure optimal performance. Model lifecycle 
management is conducted using MLflow, with model storage and associated metrics maintained 
in MinIO, a NoSQL database. This infrastructure allows the platform to dynamically adapt to 
changes in system behavior, performance degradation, and operational adjustments due to 
maintenance activities. 

The integration between the model lifecycle platform and the edge system is facilitated by an API 
that manages a MongoDB collection, which stores the top three versions of each model. This API 
allows for the selection of the best-performing model based on real-time data, ensuring that the 
most effective models are deployed. Additionally, the API serves models from the edge MongoDB 
database to the live simulation, scheduling, and evaluation systems. A live evaluation system 
continuously monitors model performance at 30-second intervals, with results stored in a 
TimescaleDB and visualized through Grafana dashboards. This setup allows for real-time 
performance tracking and automatic model adjustments if deviations are detected. 

The platform's optimisation function utilizes these live models to execute a trained Deep 
Deterministic Policy Gradient (DDPG) reinforcement learning algorithm. This algorithm optimizes 
the operational strategy for the CHP and DHC systems over a six-hour horizon, with scheduling 
updates occurring every 15 minutes. The optimizer directly interfaces with the CHP and DHC 
systems via PLC connections, allowing for the execution of the optimized operational plan. This 
architecture ensures that the Digital Twin platform not only supports efficient edge operations but 
also continuously evolves through cloud-based model management, offering a scalable and robust 
solution for optimizing energy operations in a variety of settings. 

The pilot project aimed at optimizing the live operation of both the CCHP plant and the district 
heating supply has successfully incorporated the use of a 1000m³ heat accumulation tank as a 
critical flexibility medium. This thermal storage capability allows for the strategic shifting of heat 
generation away from peak consumption periods, enabling the plant to adapt production 
schedules in a way that maximizes revenue from electricity sales to the market. Before 
implementing these optimisation measures, the operational planning of the DHC system was 
primarily based on historical consumption data and the empirical knowledge of plant operators. 
Operational decisions, including the scheduling of heating and cooling, were guided by anticipated 
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demand fluctuations and expected changes in gas and electricity prices, drawing heavily on past 
experiences. To better utilize the system’s thermal storage, operators adjusted the push 
temperature of water from the tanks on an hourly basis. However, this approach had its 
drawbacks, including significant thermal losses during storage and distribution, which reduced 
overall system efficiency. Additionally, regulatory requirements, such as maintaining a minimum 
temperature of 65 degrees Celsius in the DH4 pipeline to ensure the provision of sanitary hot water 
for the swimming pool and showers, imposed further constraints. These challenges underscored 
the complexity of managing a regulatory-compliant, efficient DH&C system and highlighted the 
necessity for an optimized operational strategy. 

6.4 Advanced controls 

6.4.1 District heating and cooling demand forecasting 

To leverage the 1000m³ TES capacity, it is essential to infer near-future consumption and determine 
the energy that must be produced during a given period. This forecast provides information on 
how much energy needs to be produced for the next six hours in 15-minute intervals, allowing the 
optimiser to decide whether to produce energy before, after, during consumption, or a 
combination of these. 

This tool was built using deep learning, specifically a stack of LSTM layers. The input variables are 
listed in Table 11. In Figure 61, the resulting forecast is shown in red, compared to the actual values 
in blue. Most of the error is attributed to the weekend factor, and future work will include 
information on weekends and bank holidays to address this issue. 

 

 

Table 11 Input variables of the DHC demand forecasting 

Name Description Units 

Heat Energy Consumed energy of the district heating measured at 
power plant heat exchangers (Last 24 hours of data). 

GWh 

Cold Energy Total consumed energy of the district cooling measured at 
power plant heat exchangers (Last 24 hours of data). 

GWh 

Ambient temperature Temperature measured at the CHP power plant (Last 24 
hours of data). 

ºC 

Wet bulb temperature Temperature measured at the CHP power plant at 100% 
humidity level (Last 24 hours of data). 

ºC 

sin(15min) Artificial variable, sinus wave with period of 1 day (Last 24 
hours of data). 

- 

sin(dayofyear) Artificial variable, sinus wave with period of 1 year (Last 24 
hours of data). 

- 
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Figure 61 District Heating demand forecasting results on test data. 

6.4.2 Electricity price forecasting 

One of the main sources of income for the CCHP is selling the excess electricity generated after 
producing both heat and cold. The Spanish electricity market is regulated by OMIE, which facilitates 
the matching of electricity supply and demand in a competitive market environment. Prices in the 
Spanish electricity market are determined through a marginalist auction system, where bids and 
offers from generators and consumers are matched to set the market price for each hour of the 
day. This system is designed to reflect the true cost of electricity generation and consumption, 
allowing for efficient price signals and promoting the optimal dispatch of generation assets. 

As shown in Figure 62, the OMIE price fluctuates significantly between days, following a consistent 
daily pattern. Most of this fluctuation is due to the generation of renewable energy sources, which 
enter the market at near-zero costs. On days when both solar and wind power have optimal 
production, they generate most of the necessary energy, allowing only the next most cost-efficient 
energy sources, such as hydroelectric power, to enter the market. Our model appears to capture 
these oscillations effectively. 

 

 

Table 12 Input variables of the Omie Price forecast model 

Name Description Units 

Electricity Price  Price at which the power plant is selling electricity (Last 24 
hours of data). 

€ 

sin(15min) Artificial variable, sinus wave with period of 1 day (Last 24 
hours of data). 

- 

sin(dayofyear) Artificial variable, sinus wave with period of 1 year (Last 24 
hours of data). 

- 
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Figure 62 OMIE price forecasting results on test data. 

6.4.3 Combined heat and power recurrent simulator 

With the DHC demand and OMIE forecast available, we need to determine how to meet the 
expected heat and cold demands. As we plan to simulate the next six hours recursively, changing 
only the OMIE, gas prices, and demand forecast inputs, the power plant simulator must be 
recursive. 

This simulator is built using machine learning models, where each machine simulation uses inputs 
from other machine simulation outputs, forecasting models, or action variables, such as the supply 
temperature of the DHC. This configuration allows us to recurrently calculate the state of the CHP 
system using only the action variables. 

 
Figure 63 CHP operation simulation, economical sankey diagram 

Our reinforcement learning agent optimizes the next 6 hours of operation with recommendations 
every 15 minutes using the CHP-DHC environment. The calculation that the agent uses as reward 
is the gross accumulated margin of the whole CHP-DHC system: 

𝑅 =  ∑ 𝛾𝑖𝑅𝑖

24

𝑖=0

 

Where Ri is margin calculated on the forecasted quantities: 
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𝑅𝑖 =  𝐻𝑒𝑎𝑡𝑆𝑜𝑙𝑑𝑖 ∙ 𝐻𝑒𝑎𝑡𝑃𝑟𝑖𝑐𝑒𝑖 + 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑆𝑜𝑙𝑑
𝑖
 ∙  𝐸𝑙. 𝑃𝑟𝑖𝑐𝑒𝑖 − 𝑃𝑒𝑙𝑙𝑒𝑡𝑠𝐶𝑜𝑛𝑠𝑖  ∙  𝑃𝑒𝑙𝑙𝑒𝑡𝑠𝑃𝑟𝑖𝑐𝑒𝑖 − 𝐺𝑎𝑠𝐶𝑜𝑛𝑠𝑖 ∙ 𝐺𝑎𝑠𝑃𝑟𝑖𝑐𝑒𝑖 

The reward function in a reinforcement learning algorithm, especially one with a decay value, is 
crucial for guiding the agent’s learning process. It provides essential feedback on actions, helps 
optimise policies, balances short-term and long-term goals, and enhances the agent’s ability to 
navigate and learn effectively in complex, uncertain environments. In our case, adding the decay 
value allowed the agent to optimise the entire period while focusing more on the early stages of 
the forecast. This approach enables the agent to learn to optimise the whole period, decide to 
accumulate energy in the tanks, and simultaneously optimise short-term operations. 

Figure 64 illustrates the results from the initial machine learning strategy for optimisation. The first 
graph reveals the total gains (profit in euros), the middle graph displays the control points for the 
tanks' outputs, and the last graph presents the predicted needs for each district's heating system. 
During this process, the algorithm opted to increase the temperature for the tank accumulation. 
This decision, influenced by the relationship between the cost of gas and the selling price of 
electricity, led to reducing CHPs activation, which resulted paradoxically in financial losses rather 
than gains. 

 
Figure 64 Optimized operation. 

6.5 Assessment of the control performance 

The average training MSE across all models is approximately 9.76%, while the average testing MSE 
is slightly higher at 11.44%, indicating that the models perform consistently, although they 
encounter some additional error during real-world application. The average training MAE is 8.50, 
and the testing MAE is 9.62, further supporting the observation that model accuracy slightly 
decreases when applied to unseen data. In terms of percentage error, the average MAPE for 
training is 5.18%, whereas for testing, it increases to 6.62%. These metrics suggest that while the 
models generally perform well, there is room for improvement, particularly in reducing the error 
during testing to ensure more robust predictions in live operations. The increase in error from 
training to testing phases highlights the importance of continuous model refinement and 
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retraining to better capture the complexities of the CHP and DHC systems under varying 
conditions. 

The smart control was tested on historical data to benchmark its performance against traditional 
operational strategies. In Figure 65, the left y-axis displays the rewards calculated for the baseline 
operation (blue), the optimized operation (orange), and the accumulated difference (green). The 
right y-axis shows the aggregated heat demand of the district heating system (red), ambient 
temperature (blue), and the differential between the baseline and optimized operations. 

 
Figure 65 Operation Comparison between Digital Tween and Classic Operation strategy 

The Digital Twin demonstrates its capability to optimize the scheduling of active machines in the 
power plant, manage heat accumulation in the tank, and regulate the supply temperature for 
district heating. Several conclusions can be derived: 

• The Digital Twin does not consistently outperform the baseline in every 15-minute interval. 
This variability is due to the flexibility gained by adjusting the accumulation tank temperatures, 
which allows the Digital Twin to align heat generation with periods of high electricity prices. 

• By leveraging this flexibility, the Digital Twin effectively coordinates the operation of engines, 
heat exchangers, and absorption chillers during peak electricity price periods, thereby 
enhancing the overall efficiency and profitability of heat generation. This increase in efficiency 
and benefits, however, must account for the losses incurred during heat accumulation. 

• During the observed week, the Digital Twin capitalized on higher electricity prices in the 
mornings, primarily due to the reduced availability of solar power in the market. The system 
generates electricity during these periods, utilizing engine refrigeration and exhaust gases to 
increase the temperature in the accumulation tanks, while supplying the district heating 
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system at the lowest available temperature (60°C). Although this strategy leads to higher 
morning profits compared to the baseline, the cessation of engine operations at midday 
results in lower afternoon benefits due to the shift from electricity selling to consumption for 
pump operations, which favours the baseline operation instead. 

• Overall, the Digital Twin operation yields an average daily increase in power plant revenues of 
approximately 7.95% compared to the baseline. 

• As we reduced the operation temperature of the district heating from an average of 80 ºC to 
65ºC, the loses of both the accumulation tanks and the distribution network deceased about 
a 22.12%. 

6.6 Lessons learned  

The main learning out of operating the data mining tool and the advanced controls embedded are: 

• Advanced forecasting tools are of utmost importance: without the forecast tools 
developed for OMIE (electricity price), MIBGAS (natural gas price) and DHC demands, 
scheduling and optimizing the operation of the CHP-DHDC have shown to be not feasible. 

• Flexibility between generation and demand is necessary to decrease costs and emissions, 
moving the generation into the high OMIE hours of the day allowed us to use the engines and 
absorption machines that are much more efficient than the pellets or gas burners. 

• Lowering the temperature of a district heating is not always an easy task and highly 
depends on contracts with the prosumers, going beyond certain temperate needs the 
installation of smart substations with heat pumps that is not always feasible. 

• The original data stored in the SCADA, used to operate a system using classical operation 
methods, may not be gathering all the necessary data values to be able to create a digital 
simulation of the physical power plant. 

• Defining the actuators and the simulation loop in a CHP power plant can significantly 
increase the complexity of the simulation. The addition of an initial scheduler allows the 
live optimizer to use accumulation as a resource and increases the efficiency of the CHP power 
plant.  

• Using Reinforcement Learning to simulate such a complex system as a CHP power plant is 
not straightforward, the actuators and the environment play a vital role on the accuracy and 
speed of the agent training process. We had to simplify the system variables to obtain the 
expected results. 
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7 Szczecin (SEC-E.ON) 

7.1 Description of the demonstration site 

Szczecin’s demonstration site is located on the Łasztownia river island, and constitutes the first 
case of low temperature, hybrid DHC network in Poland. 

 
Figure 66: Łasztownia Island. On the Right, red highlighted, the area interested by the REWARDHeat Project 

The newly developed network follows the E.ON ectogrid™ concept. Typical operating temperatures 
range from 30-50 ºC at the supply pipe in summer and winter, respectively, and 25-35 ºC at the 
return. A Heat Balancing Station (HBS) connects the new network to the existing high-temperature 
district heating (DH) system and adiabatic coolers, enabling the distribution of both heating and 
cooling to users. Currently, the HBS supplies the Maritime Science Centre (MSC) with approximately 
400 kW for heating and 600 kW for cooling. It is designed to support future expansion, covering 
3450 kW for heating and 2250 kW for cooling. 

 
Figure 67: Łasztownia Island – 5G DH network 
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The MSC’s space heating and DHW loads are covered with direct heating in winter. Polyvalent, 4-
pipes, water-water chillers cover DHW and space cooling needs in mid- and summer seasons and 
reject waste heat into the network. The chillers draw water from the network's return pipe, 
ensuring the condenser operates within its permitted temperature ranges throughout the year. 

All assets on the secondary side at the MSC are supervised by a local BMS and managed by the 
building energy manager. Both, HBS and MSC transfer data in two directions to and from the DHC 
network SCADA system. 

7.1.1 Objectives of the demonstration activity 

The scope of the demonstration activity is to supply heating and cooling to the MSC. The MSC 
needed thermal capacity was calculated in about 400 kW @ 45/35°C for what concerns heating, 
and 600 kW @ 7/12°C for cooling. Specifically, the objectives pursued during the project are: 

Development and set up of the initial low temperature DHC network backbone; 

Construction of the Heat Balancing Station (HBS) and set up of the first customer substation; 

Implementation of the HBS management system, aimed to optimize mass flow and temperature 
in the network based on demand side loads assessment. 

Assessment and improvement of the solutions implemented and development of 
recommendations for replication 

Analysis of the available waste heat on the island from identified potential sources: a chocolate 
factory and a food cold storage facility. 

7.2 Control problem formulation 

As in the other cases, which we reported about previously (see section 4 and 5), also in this case, a 
network operated with low-temperature and low-DT between supply and return, requires special 
attention in terms of management in order to maximise thermal capacity distributed and efficient 
share of energy among prosumers. Specifically with respect to the smart control development, the 
optimization goals are: 

to minimize energy drawn from municipal high-temperature DH network, by reducing heat 
distribution losses and maximising waste heat recovery from cooling the MSC; 

to predict heating and cooling demands and cover them with stored energy as much as possible; 

in the long run, balance out heating and cooling loads along the network and among the users 
connected. 

7.3 Description of the control implemented 

7.3.1 Heat Balancing Station  

The Heat Balancing Station (HBS) is designed to maintain the desired temperatures in the warm 
and cold pipes using the ectocloud™ system. This system determines the average temperature of 
the thermal buffer tank to ensure that either heating or cooling is produced, while keeping the 
storage temperature within the specified range. The control system ensures that the storage 
temperature never exceeds the boundaries of the desired temperatures, thus optimising the 
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system's performance for both heating and cooling, while minimising the energy drawn from the 
conventional district heating backbone during winters. 

Automation programming has been implemented to ensure smooth and robust operation of the 
Heat Balancing Station (HBS). This includes the integration of necessary interfaces and supporting 
functionality to enable intelligent control via the ectocloud™ system. The automation ensures that 
the system can dynamically adjust to operational demands, optimising both heating and cooling 
processes while maintaining the required temperature range for efficient energy management. 

The main requirements on the local control at HBS is to in real-time: 

Produce the right amount of heating and cooling loads 

Shift between heating and cooling as indicated by the grid demand balance 

Supply the right temperature to the network cold or warm pipe as requested by ectocloud™ 

 

 

 

 
Figure 68 – Heat Balancing Station P&I diagram 
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Figure 69 – Control concept sketch of thermal buffer tank control aimed to maintain supply temperatures to 

the Łasztownia low-temperature district heating and cooling grid within the desired boundaries 
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7.3.2 Maritime Science Center substation 

At the Maritime Science Centre (MSC), the local control system works to meet the building's heating 
and cooling demands, while simultaneously aiming to return energy to the network at the 
appropriate temperature. This is mainly achievable for excess heat generated by the building’s 
internal chillers. By precisely controlling this temperature, the system allows for internal heat 
recovery at the optimal temperature, while also aligning with broader system considerations such 
as energy balancing and waste heat integration, which will become increasingly important in the 
future. 

To achieve this, the substation shown within the dashed contour in Figure 70 supplies hot water to 
meet heating demands through the hot pipe (in red) and supports the chillers through the cold 
pipe (in blue). Although the building generally requires either heating or cooling, this configuration 
enables the system to deliver both when needed. Sufficiently high temperatures can be supplied 
via the hot pipe, while the cold pipe maintains water temperatures compatible with chiller 
operations. 

 
Figure 70 – DHC substation at prosumer side 

7.3.3 SCADA and Energy Analytics System 

Both the Heat Balancing Station and the Maritime Science Centre are integrated with the existing 
SCADA system at the Municipal Grid Control Room, allowing real-time monitoring of values and 
manual control of actuators if necessary. Data for the SCADA is transferred via a router with 
redundant communication channels. 

For the commissioning of the digital energy management platform, ectocloud™, the installation of 
an IoT Gateway is required. This device facilitates bidirectional communication between 
ectocloud™ and the local control system, with communication conducted over secure protocols. 
The Energy Manager is a mandatory component for the supply substation and for all end-users 
connected to the low-temperature grid. Typically, it is installed on a DIN rail inside control cabinets 
near the PLC or the switch/router. It is powered by a 24VDC supply and requires 60W. It is equipped 
with an Ethernet port and a SIM card slot for GSM communication. It connects to the BMS to: 

collect heat/cooling demand data; 

transfer heat/cooling meter data; 

transmit control signals. 
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To communicate with the PLC, the system 
uses Modbus TCP/Modbus RTU in master or 
slave mode. It employs outgoing WAN 
protocols with data encryption such as MQTT 
SSL/TLS, AMQP SSL/TLS, HTTPS, and SSH.  

Before transmission, data is briefly stored. 
All communication links are continuously 
monitored, and each has a fallback strategy 
in case of failure. A "watchdog" feature 
monitors communication with the PLC, 
triggering alarms and activating the fallback 
strategy in case of faults. 

Once the digital infrastructure is in place, the 
platform provides users with interfaces and 
data analytics tools to monitor the energy 
system in near real-time, track aggregated 
energy data, and follow key system 
performance indicators (KPIs). The platform 
enables analysis of the internal exchange of 
heating and cooling within the Maritime 
Science Centre, as well as the net demand 
supplied by the low-temperature grid. 

 

 

 

Figure 72 – Typical control cabinet (left) and typical E.ON  Energy Manager mounting (right) 

 

 
Figure 73 - Example of net load supplied by the low-temperature grid 

Figure 71 – Communication architecture implemented 
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Figure 74 – Example of heat balancing station assessment  

7.3.4 Advanced controls 

The advanced control of the ectogrid™ on Łasztownia Island focuses on steering network 
temperature to achieve system-wide benefits. After establishing basic control at the Heat Balancing 
Station (HBS) and Maritime Science Centre (MSC) to allow adjustments in emitted temperatures, 
an overarching control was implemented to coordinate grid temperatures and demonstrate the 
advantages of dynamically shifting temperatures based on the heating and cooling demand 
balance. 

Managing thermal energy supply and distribution relies on historical data collected in the cloud, 
which is processed using a machine learning-based tool. This data reveals trends, customer 
behaviour, and supports the creation of consumption profiles. Considering weather forecast 
inputs, the tool provides predictions of expected demand. 

Energy forecasting has been developed to support intelligent control strategies, forming the basis 
for anticipating demand for current and future advanced control scenarios. Predicted demand 
data is valuable for preloading buffer tanks with heat or cool energy in anticipation of periodic peak 
demands. Heat/cool storage, along with grid volume capacity, increases system inertia and helps 
minimise temporary reliance on the high-temperature district heating backbone. 

Through demand measurement and machine learning-based forecasting, alongside temperature 
impact assessments on various system components, temperature setpoints for the warm and cold 
pipes were distributed hourly to the HBS and MSC.  

7.4 Assessment of the control performance 

The energy load forecasting of heating demand from the grid resulted in the following model 
training performance: 

R2: 0.94 

RMSE: 8 kWh 

 



 

 

www.rewardheat.eu  Page 76 of 104 

With the most dominant predictor being the 6-hour average outdoor temperature. As for the 
cooling demand forecast, the following training performance was achieved: 

R2: 0.86 

RMSE: 16 kWh. 

Mostly the outdoor temperature on a 1-hour and 24-hour average basis plays a significant role in 
determining the forecast output, but also the time of day which indicated that on average more 
cooling is needed in afternoons. 

 

 
Figure 75 – Distribution of error achieved when training the heating (top plot) and cooling demands (bottom 

plot) 

Although not all necessary data is currently available for a complete energy impact analysis of the 
control system, thermodynamic principles suggest that certain benefits are likely realised, 
specifically: 

Lowered distribution losses due to dynamic control of the grid temperature 

Increased efficiency of waste heat recovery at MSC (excess heat from chillers) 

Efficient use of adiabatic cooling at HBS in relation to distribution 

From the periods when network temperature control was tested, it was evident that the full 
temperature range was utilised, generally lowering grid temperatures as often as possible. During 
an analysed period in spring 2024, the mean temperature was controlled to 41°C in the warm pipe 
and 33°C in the cold pipe. Heat losses in transmission, compared to a static temperature regime, 
were found to be significantly reduced—up to around 15% less, depending on soil temperatures—
demonstrating potential savings achievable with further analysis and refinement. 

Additionally, as grid temperatures were lowered in response to reduced heating demand and 
increased cooling demand, the efficiency of the MSC chillers improved. Assuming Carnot cycle 
efficiency, a 10°C reduction in network temperature, as achieved in summer, would yield a chiller 
efficiency gain of over 30%, while adiabatic coolers at the HBS efficiently managed the release of 
unused excess heat. 
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Regarding adherence to overall temperature control, the heat supplied from the HBS and MSC 
chillers generally aligned with setpoints. However, temperatures at the HBS were often slightly 
below target, suggesting room for improved local control. Safety margins in setpoints were found 
to compensate adequately for these variations, with future improvements noted for enhanced 
control precision. Although local control responds to requested temperature changes, further 
refinements are likely to allow even better adherence, which has been earmarked for future 
development. 

 
Figure 76 – Warm and cold pipe distribution temperatures and thermal energy distributed 

 

 
Figure 77 – Heat Balancing Station set points and distribution temperatures achieved 
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7.5 Lessons learned 

While implementing smart analytics and control at Łasztownia, there were some practical lessons 
learned: 

• Implementation of PLC/BMS control logic: Integrating the PLC with the BMS control logic 
proved challenging, as automation contractors were not thoroughly acquainted with the 
innovative energy concepts used in this project. This unfamiliarity required additional time 
and support for accurate implementation, which could influence system setup and 
optimisation. 

• Challenges in data collection: Acquiring all relevant data necessary to comprehensively 
analyse system effects and energy performance was hindered by network limitations, data 
access issues, and security concerns. These challenges impacted the ability to obtain a full, 
real-time picture of system performance, restricting data-driven adjustments. 

• Importance of multilevel control attention: Focusing on all control levels, from real-time 
equipment regulation within substations to system-wide optimisation, is critical to fully unlock 
the potential of the energy system. Close attention to these layers ensures that performance 
gains are achieved at both local and network scales. 

• Network temperature influence: The temperature within the network can be dynamically 
adjusted through intelligent control algorithms, resulting in tangible system benefits. This 
capability enhances the adaptability of the network to changing demands and operational 
conditions. 

• Demand-Based temperature modulation: The flexibility to adjust temperatures based on 
varying demand presents advantages in energy production, recovery, and distribution. By 
tailoring temperature settings to demand, the system can achieve improved efficiency and 
heat recovery. 
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8 Topusko (ENISYST) 

8.1 Description of the demonstration site 

The area of Topusko is rich in thermal springs. The concessionaire for the extraction of geothermal 
hot water is Health Spa Topusko and TOP-TERME LCC, who manage a large healthcare structure 
including hotels, mud baths and swimming pools. 

Heating and DHW preparation for all buildings and facilities takes place inside the central thermal 
station (CTS, Figure 78): geothermal water is collected from the TEB-4 well @ 62 °C and used to 
condition technical water to the different temperature levels needed; technical water is then 
distributed from here to the uses. 

 
Figure 78: Scheme of energy facilities in Topusko. 

Four heat exchangers, 712 kWth capacity each, generate heating for all buildings @ 50°C. From here, 
geothermal water is cascaded to the heat exchangers devoted to the preparation of DHW stored 
@47 °C in one 10m3 TES, and further distributed to the water storages for balneology and 
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swimming pools. Two concrete tanks store water at high temperature (90 m3 @ 47°C) and low 
temperature (120 m3 @ 30°C). In the latter case, water is preliminary cooled by means of a wet 
cooling tower. Water from the two TES is distributed to baths or swimming pools where it is mixed 
to obtain the needed temperature level.  

In addition to distributing geothermal and technical water throughout the healthcare facility, high 
electricity consumption is also required to operate the wet cooling tower. This demand is 
particularly pronounced during the summer when there is no need for space heating, hence higher 
temperature water is available after DHW preparation. 

 
Figure 79 – Scheme of the central heat station (CTS) with flow chart of the control signals. 

8.1.1 Objectives of the demonstration activity 

Within REWARDHeat a complete refurbishment of the CTS and of the structure’s DH network has 
been performed, aimed to significantly increase the overall system energy efficiency. The following 
measures have been implemented: 

• All pipelines from TEB-4 to CTS and from CTS to all uses have been replaced with insulated 
ones; 
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• CTS pipes have been substituted, constant speed pumps and wet cooling tower’s fans have 
been replaced with inverter-controlled, variable-speed ones, and manual valves have been 
replaced with remotely controlled ones. This allowed to implement an active control of both 
mass flows and temperature set points at the CTS.  

The control hardware of the whole system at the CTS has been renovated by ENISYST, as at project 
start the system was operated manually, including the following measures (see Figure 79): 

• Temperature sensors have been installed along the pipelines, DHW and geothermal water 
TES.  

• Flow meters have been installed along the pipelines to get a complete view of the water flows 
and the thermal energy distributed within and from the CTS. 

• Electric meters have been used to measure the electricity consumption of the whole CTS and 
of the wet cooling tower. 

• Although building substations could not be substituted nor can be controlled actively as they 
are owned by the building owners, heat meters have been installed also and connected to the 
CTS via LoraWAN technology, aimed to monitor space heating delivery and DHW preparation, 
hence allowing to forecast future energy uses. 

8.2 Control problem formulation 

To increase the overall efficiency of the system apart from the CTS hardware and thermal network 
refurbishment, an active control strategy has been implemented, including: 

• Control of the mass flow, supply and return temperatures in the three-tube district heating 
network distributing energy to the buildings; 

• Control of the geothermal water supply temperature and mass flow to the baths and 
swimming pools and its temperature in the dedicated TES; 

• Control of the cooling tower’s fans speed. 

 

The three control problems of course strongly influence one another, hence requiring a high-level 
control optimisation to guarantee the optimum use of geothermal water and to minimize the 
electricity consumption. In the following the three control problems and their specific challenges 
are described. Afterwards, the overall optimised control is described. 

8.3 Description of the control implemented 

8.3.1 SCADA system 

ENISYST delivered control cabinets which include the controller, internet router, IO-modules, low 
voltage power supply, ethernet switches, electrical fuses, emergency control level for manual 
operation, and a tablet for the access to the web-based control system. For the new controller 
generation, which is used as edge device / IoT gateway, ENISYST has evaluated different market 
available controllers and carried out software and operational performance tests. The Avnet 
AVTSE-RPI-IIOTG controller, has been selected for the system in Topusko. It includes Wifi and BLE 
on board, Internal Raspberry Pi HAT, mPCIe and USB ports. 
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Figure 80 – Housing (left) and mainboard (right) of the Smart Edge device AVNET. 

ENISYST software integrates the following features: 

• eni.serv, which is a cloud-based high-level district/property management and control system 
running on a server in the cloud; 

• eni.web, which is a low-level WEB based monitoring and control system running on the 
controller on site. 

 

A secure connection via the internet to the district/property management system is implemented 
which includes a two-factor identification for the access to eni.serv; this is connected via VPN 
tunnels to the different controllers on site. For security reasons, the VPN tunnels and the https:\\ 
connections are established by the local controllers. Here the users get an overview of their 
connected systems, can compare system performances of different sites and can access the local 
WEB based BMS (eni.web), running on the controllers on site. 

The plant operators can access the local BMS of the different sites via eni.serv. From the starting 
page, different levels and views can be opened like the hydraulic scheme with on-time visualisation 
operational parameters and system performance; the latter can be assessed by means of line 
graphs, scatter plots and carpet plots. From here it is also possible to operate single units in manual 
mode. For smart district or property management eni.serv integrates a central database and load 
forecast algorithms enabling AI-based controls.  

 
Figure 81 – eni.serv as data management and predictive optimisation platform. 
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8.3.2 Advanced controls 

The three pipe district heating network is built with one pipe devoted to space heating supply, one 
pipe for domestic hot water preparation supply and one common return. The control of the 
network is performed with automated two-way valves that open when users require thermal load 
and are modulated to meet temperature set points. The newly installed, inverter driven pumps 
maintain pressure drop across the network constant, minimising mass flow distributed and 
maximising the temperature drop between supply and return. This shows several advantages: 

• Electricity consumption for distribution and thermal losses are minimized 

• By lowering the return temperature, the cooling load needed to keep the geothermal water at 
30°C in the low-temperature concrete tank is also reduced. As a result, the electricity 
consumption of the wet cooling tower needed for this purpose is minimized. 

 

In fact, geothermal water is pumped into the concrete basins in order to maintain a constant level 
and a minimum water temperature. The distribution to the baths and swimming pools uses 
variable speed pumps to maintain a constant pressure at the supply manifold. The wet cooling 
tower’s fans are controlled to maintain a constant return temperature of the geothermal water to 
the cold basin. This significantly reduces both electricity and freshwater use. 

AI-based high-level supervision 

The principle of AI-based predictive control is shown in Figure 82. From the measured performance 
data, a demand model is generated using machine learning and statistical methods.  

 
Figure 82 – The principles of the AI based control. 

The aim is to forecast demand for the cold and hot water storage tanks in order to minimise the 
charge levels and reduce energy consumption. Up to now, storages have been charged with 
thermal water when the level fell below 60%. A predictive control system is now implemented 
which uses prediction methods.  
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Figure 83 –  Topusko system scheme 

Prediction method 

Various input data was used for model training, including outside temperature, month, day of the 
week and hour of the day. Weather forecast data from a database and live measurements from 
the pilot site, such as fill level data and flow rates, are used for the real-time forecast.  

In particular, a random forest regressor algorithm, a meta-model based on the principle of the 
decision tree, was utilized. A random forest trains several decision trees on different subsets of a 
data set and then averages the results. This serves to increase the accuracy of the predictions and 
avoids overfitting the model. The decision trees within the random forest use optimal splitting 
strategies. A 20:80 split was made between the training and test data. To validate the prediction 
the coefficient of determination and the normalized root mean square error were used. 

Coldwater demand 

Figure 84 shows the prediction of cold-water demand, split into random train and test subsets. 
Figure 85 shows the corresponding prediction of cumulated cold-water demand based on the 
previously trained model. With training and test data obtained in the period from 2024-01-01 till 
2024-07-14 results with test data of R2 = 0.82 and a NRMSE = 0.13 m³ (120 m³ cold water storage) 
could be archived. As such, the forecast quality was sufficient to be implemented in the control 
system. 

 

Coldwater tank 

Warmwater tank 
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Figure 84 – Topusko prediction of coldwater demand; split into random training and test subsets 

 

Figure 85 – Topusko prediction of coldwater demand; cumulated demand 

 

Warmwater demand 

Figure 86 shows the prediction of warmwater demand, split into random train and test subsets. 
Figure 87 shows the corresponding prediction of cumulated warmwater demand based on the 
previously trained model. With training and test data obtained in the period from 2024-01-01 till 
2024-05-14 results with test data of R2 = 0.83 and a NRMSE (MinMax) = 0.12 m³ (90 m³ warmwater 
storage) could be archived. Again, the forecast quality was deemed sufficient to be implemented 
in the control system. 
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Figure 86 – Topusko prediction of warmwater demand; split into random training and test subsets 

 

 
Figure 87 – Topusko prediction of warmwater demand; cumulated demand 

The objective of the ML-based control system is to improve the efficiency of cooling process and 
minimize energy consumption by leveraging real-time environmental data and the operational 
needs of the system. For the geothermal water supply three different strategies were tested 
various environmental conditions: 

• Night-time cooling through natural convection. This implies loading the thermal storage tank 
completely in the evening. This approach aimed to capitalize on the natural cooling process 
that occurs at night due to lower ambient temperatures. The hypothesis is that cooling the 
stored water through passive night-time convection will reduce the need for active cooling the 
next day. The advantages thereby are that it reduces the reliance on energy-intensive cooling 
systems during peak hours and that it uses naturally cooler night-time temperatures to 
dissipate heat, improving energy efficiency. The challenges are that ambient temperature at 
night might still be relatively high during summer months, limiting the effectiveness of natural 
cooling and that this strategy could result in inefficiency if storage capacity is predicted 
inaccurately for the following day. 
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• Loading the storage during the coldest hours of the night, leveraging lower ambient 
temperatures. The second strategy focusses on loading the tank during the period when 
outdoor temperatures are at their lowest, typically in the early morning hours. This technique 
attempts to maximize the active cooling effect by exploiting the coldest possible conditions to 
store cooler water for the upcoming day. The advantages thereby are a more effective cooling 
due to lower ambient temperatures. The challenges here are that it requires accurate 
prediction of when the coldest period will occur, which can vary depending on local weather 
patterns, especially when accurate weather data predictions are not available for the specific 
site that might also be affected by local weather phenomena and shading from hills, forests, 
etc. 

• The third method involves cooling the water first before loading it into the tank. This approach 
uses cold geothermal water as an auxiliary cooling source, especially during warmer periods. 
The use of geothermal water reduces the energy required to operate the cooling tower. 
However, this method is unnecessary in the winter when ambient temperatures are naturally 
lower. The advantages thereby are that it reduces the overall demand on mechanical cooling 
systems, leading to energy savings. It is not applicable during colder seasons, necessitating a 
dynamic control that adapts to seasonal variations. 

8.4 Assessment of the control performance 

The implementation of a new Control and Monitoring System has significantly enhanced the 
efficiency of thermal energy management. Key components of this upgrade include the installation 
of controllable valves, new variable frequency drive pumps, and a state-of-the-art SCADA system 
with web access. In addition to these main components, numerous temperature probes, pressure 
sensors, and flow meters have been integrated into the system to facilitate improved operational 
control. 

One of the most notable achievements of implementing advanced controls was the significant 
decrease in the utilisation of geothermal water. By optimizing system parameters and enhancing 
control mechanisms, the overall demand for geothermal water was reduced, thereby contributing 
to the sustainability of geothermal resources. 

The integration of controllable valves, variable frequency drives (VFDs), and a robust SCADA system 
has led to an approximate 25% improvement in overall system efficiency. This increase not only 
demonstrates the effectiveness of the upgrades made to the thermal energy system but also 
underscores the importance of utilizing real-time data to fine-tune operations. 

Through enhanced monitoring and control capabilities, the project successfully achieved a 
reduction in annual thermal energy consumption by approximately 27%. This accomplishment 
reflects the effectiveness of the adjustments made to the system's operational parameters, 
allowing for a more efficient utilisation of resources. 

The implementation of energy-efficient technologies has resulted in a substantial reduction in 
electricity consumption, alongside a corresponding decrease in CO2 emissions, estimated at 
around 33% annually. This reduction highlights the positive environmental impact of integrating 
advanced controls and energy-efficient systems. 

The achievements from operating advanced control systems underscore the potential for 
significant enhancements and better sustainability. These outcomes not only provide a roadmap 
for future projects but also emphasize the critical importance of continuous dialogue and 
collaboration between technicians, project engineers and scientists. Engaging stakeholders more 
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thoroughly during the design and implementation phases could facilitate smoother operations and 
further optimize system performance. 

8.5 Lessons learned 

The main learnings out of operating the data mining tool and the advanced controls embedded 
are: 

Implementation and operation 

• Initial assumptions during commissioning indicated that substations were adequately 
regulated for consistent return temperature. But it was discovered that substations were not 
adequately regulated, leading to the need for additional management mechanisms within the 
Centralized Thermal System (CTS). 

• The requirement for more valves than originally planned was a direct result of this oversight. 
The experience emphasizes the necessity of thorough discussions and collaboration with 
onsite technicians, rather than solely relying on engineering designs. Improved 
communication during the planning phase could have helped mitigate the need for additional 
installations. 

• The advancements made at the Topusko pilot site demonstrate the positive impact of modern 
intelligent control systems and enhanced monitoring on thermal energy management 
efficiency. 

• Implemented changes have led to reduced energy consumption and emissions, contributing 
to a more sustainable operational model for future energy systems. 

 

ML-based Control 

• Decision tree regression was effective due to its interpretability, but careful attention must be 
paid to its limitations. 

• Proper data preparation, including ensuring data quality and choosing the appropriate 
dataset length, is vital for building reliable regression models, especially for time-series 
forecasting. Proper preprocessing, including dealing with missing values and categorical 
variables, is essential to prevent biases in model predictions. 

• Automated procedures for error correction and continuous monitoring of sensor data are 
necessary to maintain data integrity. Alerts and notifications are crucial for real-time data issue 
handling. Outliers can significantly distort results, particularly in decision tree models, leading 
to overfitting. Identifying and addressing outliers through techniques like transformation or 
trimming is necessary for robust predictions. 

• Using a dataset that is too short or too long can negatively impact model accuracy. Balancing 
historical data with relevant, recent trends is key for effective forecasting. In dynamic 
environments, models must be retrained regularly to adapt to evolving patterns in the data, 
ensuring continuous accuracy over time. Regular cross-validation during retraining cycles 
helps avoid overfitting, ensuring that the model generalizes well to new data. 

• Capturing seasonality and long-term trends in the data is crucial for accurate predictions, 
especially when dealing with time series forecasting.  
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9 Low-Temperature Substations (EURAC) 

9.1 Description of the substation 

In neutral-temperature district heating networks (NTDHNs), substations integrating heat pumps 
are essential components for the distribution of thermal energy, as they adjust the temperature 
of the energy distributed in the network to meet the specific heating or cooling needs of each 
building, acting as a prosumer. 

Adopting decentralized, active substations in DHC networks offers multiple benefits. First, a more 
efficient distribution of thermal energy is achieved, reducing energy losses during transmission. 
Additionally, these substations provide greater control flexibility to individual prosumers. 

 
Figure 88. Overview of the substation's operation within the context of NTDHNs. 

Figure 88 shows how the neutral-temperature network, operating at temperatures unsuitable for 
direct heating, integrates with a residential building. At the centre of the diagram, the substation 
is highlighted, equipped with a HP and TES. This substation supplies the necessary thermal energy 
for space heating and domestic hot water to the residential building shown on the right. This figure 
represents a straightforward configuration commonly used in substations. 

In REWARDHeat, DANFOSS and EURAC developed a prefabricated substation for residential and 
tertiary applications, in which the HP is hydraulically connected to the DH and the building via pipes 
and valves in a way to enable optimal utilisation of the HP, hence the system's COP, for given DH 
supply and building load temperatures. 

Figure 89 illustrates the different operational scenarios. Four different operation schemes can be 
made possible to enhance the effectiveness and efficiency of substation, tailored to specific 
temperature conditions: 

• If the DH supply temperature is lower than the return from the building, scheme 1 is activated. 

• If the DH supply temperature is higher than the supply set temperature to the building, 
scheme 4 is triggered. 

• If the DH supply temperature is higher than the return from the building and lower than the 
supply set temperature to the building, scheme 2 or 3 are enabled; scheme 2 maximises 
system COP, while scheme 3 minimises return temperature to the DH, while still enabling high 
system COP. 
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Figure 89. Overview of the four different configuration schemes considered in this study. The DH network is 

on the left and building on the right side of each scheme 

The primary focus of this study is the optimal control of substation within a low-temperature 
network, specifically using a high-level controller based on MPC. Special attention is given to how 
MPC can manage the operation of HP + TES systems to meet the varying energy demands of 
buildings in a flexible and cost-effective manner. Figure 90 illustrates the concept of MPC approach: 
a rule-based control takes care of the substation operation, while the MPC overrides the set 
temperatures triggering TES charging, hence forcing or delaying the activation of the HP. To this 
end, a model of the substation is used to simulate the operation of the system in quasi- real-time 
over a 24-hour receding horizon, and an optimisation algorithm calculates optimal set point 
settings over the same timeframe (see Figure 90). 

 
Figure 90. Schematic of MPC framework 

9.2 Control problem formulation 

The implementation of the MPC requires the development of several models. First, a model 
calculating the building’s thermal demand based on outdoor conditions and user behaviour is 
essential, as MPC relies on accurate forecasts to anticipate future energy needs. Additionally, the 
MPC must account for the TES state of charge (SOC) and the operational status of the HP, as their 
interaction significantly impacts the overall system performance. Reduced-order models (ROM) for 
both the HP and TES are necessary to represent their behaviour efficiently while maintaining 
computational feasibility. Lastly, the optimisation process plays a key role in defining the best 
operational trajectory over a specific timeframe. To address these requirements, this study 
encompassed a range of activities: 

• Building Demand Model: We built a ROM that not only captures the core dynamics of thermal 
load variations with computational simplicity but also remains robust and adaptable across 
various building types, sizes, and locations. The model can be trained during operation with 
limited monitoring data and is suitable for online execution, even on hardware with 
constrained computational resources. 

• TES Model: We developed a mathematical model that achieves three key objectives: Simplicity, 
allowing it to capture the essential dynamics of TES behaviour while minimising computational 
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demands; maintaining a consistent energy balance that accounts for all relevant energy inputs 
and outputs during charging and discharging processes; ensuring an accurate representation 
of the thermocline, which influences performance and the operation of the connected HP. 

• Heat Pump Model: The development of a ROM for heat pumps involves several key aspects to 
ensure accurate and efficient operation. The primary goal is to model compressor speed 
modulation to consistently track the setpoint temperature at the inlet of the load side. The 
model computes the thermal power and electrical consumption as functions of the 
compressor speed and other operational parameters. This requires a comprehensive 
understanding of the heat pump’s performance characteristics and the ability to simulate 
these under various conditions. To ensure the model remains accurate and adaptive, 
continuous training procedures are integrated. These procedures update the performance 
map based on real-time data, allowing the model to adapt to different heat pump 
configurations and operational scenarios. 

• Quasi-Real-Time Optimisation: We focused on the integrated operation of the substation, 
considering the dynamic interactions between the electricity grid, thermal grid, and buildings. 
This holistic approach ensures that all components work together seamlessly to achieve 
optimal performance. 

9.3 Description of the advanced control implemented 

9.3.1 Building thermal loads forecast 

An Artificial Neural Network (ANN) was employed to develop a ROM capable of accurately 
predicting thermal loads. This data-driven approach effectively captures complex, 
multidimensional relationships between input variables. Unlike models dependent on specific 
building physics, the ANN is adaptable to diverse building types and sizes, requiring minimal 
monitoring data. Continuous training on new data enables the model to improve over time, 
adapting to changes in building characteristics and user behaviour. 

The ANN architecture includes an input layer for relevant conditions, hidden layers for capturing 
intricate patterns, and an output layer for predicting thermal loads and indoor temperatures. 
Validated against both simulated and monitored data, this approach demonstrates superior 
performance. 

Figure 91 illustrates the model's accuracy in predicting space heating load and indoor temperature 
for a multifamily apartment. The model aligns with the receding horizon and prediction horizon of 
the MPC. As shown, every hour (receding horizon), the model forecasts the next 24 hours 
(prediction horizon), ensuring continuous, up-to-date predictions that enhance MPC decision-
making. 

The zone-temperature ANN model and thermal load model’s accuracy are evaluated through RMSE 
and MBE across different prediction intervals, including hourly, 3-hour, 6-hour, 12-hour, and 24-
hour horizons. For zone temperature, the RMSE averages approximately 0.3 °C, while the mean 
MBE is 0.18 °C, on a 24-hour time horizon; for thermal load model, the average RMSE is 12 W/m2, 
and the MBE is -2.4 W/m2. 
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Figure 91. Living room's temperature and related thermal load prediction 

9.3.2 Thermal Energy Storage modelling 

The challenge with modelling a TES is to find a compromise between model accuracy and 
computational time required. TES models based on CFD simulations are widely available, but their 
execution time is usually prohibitively slow to use them in rigorous optimisation. TES models based 
on a simple energy balance, but they lack the accuracy in modelling the thermocline behaviour, 
making them unsuitable in a context where accurate temperature forecasts are required.  

To achieve an optimal balance between runtime and model accuracy, a piston-based model was 
developed. This model greatly improved the ability to capture the formation, evolution, and 
collapse of thermoclines throughout the height of the TES. This model was designed to simulate 
key TES processes, focusing on energy transfer behaviour during charging and discharging phases. 
By concentrating on primary mechanisms, it reduces computational resource requirements. A 
critical feature of this model is its consistent energy balance, ensuring accurate tracking of all 
energy inputs and outputs. Additionally, it provides a detailed temperature gradient profile within 
the TES, which influences HP performance via the return temperature at its condenser. 

To validate and refine the model, laboratory data from various charging and discharging cycles 
under different conditions was used, enabling fine-tuning to reflect real-life operation coupled with 
HPs. The model's outputs were compared against monitored data using key performance 
indicators, assessing uncertainty and consistency across various operating conditions. Figure 92 
shows the predicted and observed tank temperatures during a preliminary dynamic test. This 
pattern was chosen, because it represents the standard dynamics when heating a TES with fixed 
Δ𝑇 while both mass flow and return temperature from the TES vary: when heating begins, a 
thermocline slowly starts to form as the heated water stays in the top of the tank. Once the 
thermocline is fully formed (in this case after around 50 minutes), the thermocline starts moving 
downwards, as the hot water is added at the top. Once the bottom of the thermocline starts 
touching the bottom port of the TES (around 80 minutes in this case), the outlet temperature starts 
rising. As this warmer temperature is fed back to the HP, the temperature of the inlet water to the 
TEs also rises, and a second thermocline starts to form. When the discharging starts (after around 
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100 minutes), all three temperatures start to drop, though this does not happen uniformly due to 
the development of the thermocline. 

 

 
Figure 92. Temperature distribution along the TES height, monitored vs. ROM simulated 

 

of a 1.2 m³ TES tested in the laboratory under dynamic conditions over several days. The TES was 
equipped with four temperature sensors, located at the heights of the inlet and outlet ports (top 
and bottom, respectively) and at two intermediate levels (mtop and mbot). In addition, the inlet 
and outlet flows were monitored using dedicated heat meters. 

A qualitative assessment (Figure 93) indicates that our simplified model aligns well with the 
laboratory benchmark, although some discrepancies remain, particularly regarding the height and 
shape of the thermocline. For instance, at 215,000 seconds, the actual data shows a single uniform 
thermocline passing through the middle-top sensor (mtop, shown in blue), while our model 
represents the thermocline in two slightly distinct steps. 

Quantitatively, the model's accuracy at specific sensor positions is illustrated in Figures 94 and 95, 
where temperature predictions for each time step are plotted against measured values. Overall, 
the model demonstrates strong agreement with the ground truth, though minor time lags between 
predicted and measured series introduce some scatter around the bisector.  

The R² values of 0.925 and 0.941 for the top and mtop sensors, respectively, indicate that the 
simplified TES model reasonably captures real-life behaviour. Specifically, it accurately predicts the 
timing and magnitude of the thermocline as it passes through the sensors governing heat pump 
hysteresis. 
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Figure 93: Predicted TES temperatures with dashed lines vs. measured ground truth.  

 
Figure 94: Scatter plot comparing the monitored TES top temperature sensors reading vs. ROM  

 
Figure 95: Scatter plot comparing the monitored TES mid-top temperature sensors reading vs. ROM 
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9.3.3 Heat pump modelling 

The model effectively captures HP behaviour by combining discrete and continuous states. A key 
element of the ROM is the performance map, constructed as a multidimensional table with inputs 
such as compressor speed, inlet temperatures at both source and load sides, and load-side mass 
flow rate, while providing thermal power and electrical consumption as outputs. This performance 
map acts as a reference for predicting HP performance under various conditions. 

Three distinct algorithms operate atop the performance map to modulate compressor speed, each 
tailored to specific operational goals. The first algorithm uses a standard state machine with ramps, 
gradually adjusting compressor speed to achieve the setpoint temperature. The second algorithm 
employs Proportional-Integral (PI) modulation, leveraging control theory for precise responses to 
temperature variations. The third algorithm focuses directly on the thermal load instead of the 
setpoint temperature, modulating compressor speed to match the heat demand. 

To ensure ongoing accuracy and adaptability, a continuous training process updates the 
performance map and regression functions with new data, allowing the model to learn from real-
time operations and refine predictions. When specific training data is unavailable, the model relies 
on default performance maps, scaled to the HP's nominal thermal power. Although these default 
maps may lack the precision of custom maps, they provide a reliable operational baseline, ensuring 
system functionality and reliability even without detailed input data. Figure 96 compares the 
performance of proposed HP model and monitored data. 

 
Figure 96. Thermal power and electrical consumption of HP, monitored (m) vs. ROM simulated (s) 

The HP model’s accuracy over 5-day simulations was assessed using RMSE and MBE for both 
electricity consumption (𝑊𝑒𝑙) and output power (𝑄𝑡ℎ). For 𝑄𝑡ℎ, the average RMSE was 0.05 kWh 
with an MBE of -2.3 Wh, while 𝑊𝑒𝑙 had an RMSE of 0.03 kWh and MBE of -3.1 Wh. 

9.3.4 Optimisation algorithm 

Dynamic programming (DP) has been implemented as the optimisation method in the 
development of MPC for this project. This approach has been chosen for its potential in smart 
control applications, where the ability to handle complex, non-linear models is essential. The 
forward implementation of DP allows for efficient computation of system dynamics over time, 
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while its capability to conduct an exhaustive search of the solution space guarantees that the 
globally optimal control strategy is identified. This ensures that even in the presence of complex 
system behaviours, such as varying HP performance and thermal energy storage dynamics, the 
MPC framework operates with maximum efficiency and accuracy. 

9.4 Assessment of the control performance 

A simulation campaign has been carried out to test the MPC versus a Rule-Based Control (RBC), 
both used to steer the substation concerned under identical boundary conditions, when set up in 
a multifamily home. 

A performance comparison has been conducted aimed to identify reliable and consistent 
operation of the MPC first, and to assess performance in terms of system COP and energy/costs 
savings overall. 

The reference building, a renovated and energy-efficient multi-family house in Stuttgart, features 
a total area of 500 m² with a heating demand of 70 kWh/m² per year. The HP’s thermal capacity is 
35 kW at 80°C, whilst the TES has a volume of 2 m³ and a height of 1.77 m. Weather conditions 
represent those of a typical December week. Along the work elaboration we considered several 
combinations of boundary conditions, including variable DH supply temperature and electricity 
price.  

The MPC’s optimisation algorithm has been allowed to change the TES set point, with a cost 
function aimed to minimise the overall operating (electricity) costs. 

Test 1: Performance Assessment with Constant Electricity Price 

In this test, the performance of MPC and RBC is compared with a constant electricity cost of 
0.3€/kWh, while the DH temperature varies between 40°C and 55°C; the simulation is conducted 
over the first week of December. 

The first plot in Figure 97 shows the thermal load, with the black line representing actual values 
and the colourful crosses indicating hourly predictions for the next 24 hours. The second plot 
displays setpoints: solid blue lines for RBC (55°C) and solid red lines for MPC. Dotted lines represent 
the user-side temperature delivered by RBC (blue) and MPC (red), showing that while the MPC 
sometimes violates the comfort condition, this effect is negligible. The third plot shows the stored 
energy in the tank, with the blue line for RBC and the red line for MPC, showing how the MPC 
decides to overcharge the TES when DH supply temperature is high and building load is low, e.g., 
at start of 2nd, 4th and 6th of December. The same happens along the day with less clear patterns, 
as the MPC also decides to delay the TES charge before low thermal load concretises. The fourth 
plot presents the cumulative electricity cost, with the blue line for RBC and the red line for MPC, 
demonstrating that MPC generally experiences lower energy costs, with a reduction quantified at 
7.44%. Finally, the fifth plot depicts the DH temperature (black line) and the system COP, as scatter 
points. The colour of these points indicates the active control scheme: as can be qualitatively seen, 
the MPC operates the substation more likely with scheme 2 (higher COP), during periods of high 
DH supply temperature.  

Figure 98 illustrates the activation time of the HP under different control schemes, enabling a 
quantitative comparison. The analysis evaluated both the total HPON time and the number of 
activation cycles. 

Under RBC, the HP was activated for a total of 2,495 minutes, with scheme 1 being the predominant 
mode (1,753 minutes, 70.3% of the total HPON time). Scheme 2 was active for 742 minutes, making 
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up 29.7% of the total activation time. The RBC exhibited a relatively low number of activation cycles: 
38 cycles observed during the test period.  

In contrast, the MPC showed a slightly lower total HPON time of 2,341 minutes. Scheme 1 was used 
for 1,517 minutes, representing 64.8% of the total HPON time, while scheme 2 contributed 824 
minutes, or 35.2% of the total. Notably, the MPC resulted in a higher frequency of activation cycles, 
as activation cycles have not been constrained in the optimiser’s cost function.  

Increasing Scheme 2 operation time results in this case in a COP rise from 7 to 7.5. 

 
Figure 97. Result of comparison the performance of MPC vs. RBC with constant electricity price (test 1) 

 

 
Figure 98. Activation time of the HP in test 1 
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Test 2: Performance assessment with time of use (TOU) electricity tariff 

In Test 2, conditions are identical to those in Test 1, except that the electricity price from the grid 
follows a Time-of-Use (TOU) tariff: €0.15/kWh during off-peak hours (00:00 to 07:00) and €0.30/kWh 
during peak hours. 

Figure 99 presents the results of Test 2, showing similar outcomes to the previous test, with the 
MPC reducing overall electricity costs by 6.7%. This is achieved by triggering substation operation 
under scheme 2 more frequently. In this scenario, the MPC selects even higher set temperatures 
during the night, when both high DH supply temperatures and low electricity prices coincide. The 
MPC strategy spending 40.4% of its operational time in scheme 2 results in a system COP increase 
to 7.5 also in this case.  

Figure 100 depicts the activation time of the HP across different schemes. The MPC not only 
reduced the total HPON time but also increased its operation in scheme 2, contributing to improved 
system efficiency. Additionally, the HP's running time during the TOU period (00:00 to 07:00) 
increased by 9% in Test 2, denoting that the MPC tries to capitalise on TOU pricing incentives. This 
slight increase suggests that the MPC recognized the cost-saving opportunities presented by the 
TOU pricing, though the marginal change implies that the TOU scheme may not have been 
sufficiently attractive to significantly alter the MPC's overall strategy.  

The MPC’s responsiveness to dynamic pricing models demonstrates potential for further 
optimisation and efficiency improvements under more compelling pricing schemes. 

 

 
Figure 99. Result of comparison the performance of MPC vs. RBC with TOU (test 2) 
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Figure 100. Activation time of the HP in test 2 

 
Test 3: Performance assessment with dynamic electricity price 

Test 3 assesses the performance of MPC and RBC under dynamic electricity pricing, building on the 
findings from the previous test. Figure 101 shows the identified hypothetical, variable electricity 
price profile, highlighting high values when DH supply temperatures are low. 

 

 
Figure 101. Electricity price in test 3 

Figure 102 presents the test results, showing a 21.7% reduction in electricity costs achieved by the 
MPC compared to the RBC. The synchronisation of incentives enables the MPC to shift a larger 
share of HP use to cost-effective periods and operate in scheme 2 for 39% of the time, resulting in 
an overall system COP of 7.4. 

Figure 103 displays the utilisation of different schemes, showing results overall similar to those of 
the previous test. The analysis shows that MPC not only reduced overall activation time by 
approximately 4.8% compared to RBC but also demonstrated higher adaptability to price 
variations. 
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Figure 102. Result of comparison the performance of MPC vs. RBC with variable electricity price (test 3) 

 

 
Figure 103. Activation time of the HP in test 3 

Figure 104 illustrates the hourly distribution of HP operation over the simulation period. The black 
line indicates daily fluctuations in electricity prices, while the green line represents the average 
thermal load throughout the simulation week. The red and blue bars show the HP operation 
distribution by hour for MPC and RBC over the entire simulation. 

The MPC strategy activates the HP more frequently during midnight hours and other low-cost 
periods, taking advantage of lower electricity prices. During these times, MPC extensively uses the 
HP to maximize TES charging, achieving its highest operation rates when electricity costs are 
lowest. In contrast, RBC shows the highest levels of HP operation during peak electricity price 
periods, such as between 07:00 and 08:00 in the morning. 
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MPC effectively manages HP operation during off-peak hours (00:00 to 06:00, 13:00 to 17:00, and 
22:00 to 23:00), totalling 1,355 minutes, compared to RBC’s 879 minutes -a 35% increase in off-
peak operation time by MPC. Additionally, the RBC operation bars closely follow the load pattern, 
while MPC bars show less correlation. This difference is due to MPC’s ability to predict future 
trends, including electricity prices and load peaks, allowing it to make more optimal decisions. 

For example, at 17:00, MPC identifies an upcoming load peak and, recognizing the current low 
electricity price, opts to run the HP extensively. Conversely, at 18:00, when electricity prices are 
high, MPC strategically minimizes HP operation and discharges the TES instead. 

 
Figure 104. HP operation distribution by hour with electricity prices and average of thermal load (test 3) 

Table 9-1 summarises the results from a costs perspective. In the first test, under the RBC strategy, 
the total electricity cost was 71.28 €, the thermal cost was 71.84 €. When MPC was applied, the 
total electricity cost dropped to 65.97 €, while the thermal cost slightly decreased to 71.41 €. 

In the second test, with RBC, the total electricity cost was 65.64 €, the thermal cost was 71.84 €. 
Using MPC, the electricity cost was further reduced to 61.24 €, while the thermal cost increased 
slightly to 73.85 €. These results indicated a 6.7% reduction in electricity costs, a 2.7% increase in 
thermal costs. In the third test, RBC resulted in a total electricity cost of 63.88 €, with a thermal cost 
of 71.84 €. Under MPC, the electricity cost significantly decreased to 50.01 €, while the thermal cost 
increased to 73.13 €. This test demonstrated a substantial 21.7% reduction in electricity costs, and 
a 1.8% increase in thermal costs. 

Table 9-1. Economic assessment of test 1, 2 and 3  
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RBC 0.3 0.3 0.05 71.28 71.84 143.12 

MPC-Test 1 0.3 0.3 0.05 65.97 71.41 137.38 
Variation [%]  -7.44% -0.5% -4% 

RBC 0.15 0.3 0.05 65.64 71.84 137.48 

MPC-Test 2 0.15 0.3 0.05 61.24 73.85 135.09 
Variation [%]  -6.7% +2.7% -1.73% 
RBC Variable 0.05 63.88 71.84 135.72 

MPC-Test 3 Variable 0.05 50.01 73.13 123.14 

Variation [%]  -21.7% +1.76% -9.26% 
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9.5 Lessons learned 

Overall, MPC consistently outperformed RBC by reducing electricity costs and achieving notable 
savings on the total bill, despite slight increases in thermal costs in some scenarios. 

The analysis indicates that MPC consistently resulted in lower total HP operation time, reflecting 
more optimized HP usage. However, the increase in activation cycles with MPC suggests a more 
dynamic response to changing conditions. To address this, it may be beneficial to include a term 
in the objective function aimed at reducing these cycles.  

Although the amount of power that the MPC controller failed to cover was slightly higher, it 
remained minimal. Further investigation, including a penalty term in the objective function, could 
help reduce this uncovered power. 

The main learnings out of operating the data mining tool and the advanced controls embedded 
are: 

• Critical role of accurate thermal load forecasting: Precise prediction of thermal load 
demand is essential for effective MPC. Utilizing ANN to develop ROM provides accurate and 
adaptable forecasts, improving system responsiveness. 

• Continuous adaptation through model training: Integrating continuous training 
procedures for models ensures they remain accurate over time, allowing the system to adapt 
to changing conditions and maintain optimal performance. 

• Effective use of dynamic pricing and load shifting: MPC demonstrates strong capability in 
load shifting by scheduling HP operation during lower-cost periods and optimizing TES 
charging strategies. This not only weights dynamic electricity pricing to reduce operating costs 
but also effectively shifts the energy load to off-peak times, enhancing overall system 
efficiency and demand side management. 

• Efficiency gains from multiple substation schemes: Considering different schemes for the 
substation managed to increase the efficiency of the system. Utilizing temperature-based 
transitions between these operational schemes and implementing hysteresis combinations 
improved substation efficiency by ensuring smooth and effective scheme changes. 

 
While this study has shown significant benefits from using MPC in decentralized substations, there 
is room for further enhancement. Below are some suggestions for improving the system and 
directions for future research to build upon our findings: 

• Incorporate equipment longevity constraints: While MPC increases efficiency, it also leads 
to more frequent HP switching rate, which may impact equipment wear in the long run.  

• Expand dynamic pricing models: Further research could explore more complex and realistic 
dynamic pricing schemes, including real-time pricing and demand-response programs, to fully 
leverage MPC's capabilities in cost reduction and load shifting. 

• Enhance model training techniques: Investigate advanced machine learning techniques for 
model training, such as reinforcement learning, to improve model adaptability and prediction 
accuracy under varying conditions. 

• Optimize TES sizing and operation: Study the impact of different TES sizes and 
configurations on system performance, aiming to optimize TES design for specific applications 
and further improve energy storage utilisation. 
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• Integrate renewable energy sources: Explore the integration of renewable energy sources, 
such as solar thermal, PV panels or battery storages, into the MPC framework to enhance 
sustainability and reduce reliance on grid electricity. 

• Extend the study to include cooling applications: This study focused mainly on heating 
applications. Future research could expand the scope to include cooling operations within the 
district heating network. Applying MPC to cooling systems can optimize performance and 
efficiency year-round, providing comprehensive solutions for both heating and cooling needs. 
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10 Key Takeaways 

The REWARDHeat project revealed critical insights in several areas of DHC network optimisation, 
from monitoring and data management to advanced control and MPC. Here are the main key 
takeaways: 

• Collaborative Development and Communication: Engaging DHC experts, operators, and 
local staff in the design and development phases was crucial for effective system integration 
and ensuring user-friendly software interfaces. This collaborative approach allowed for better 
system ergonomics and operational adaptability, making the software more effective in 
meeting practical requirements. 

• Monitoring Data and System Integration: Reliable, real-time data is fundamental for 
effective DHC management. The project highlighted challenges related to data gaps and 
network inconsistencies, with SCADA systems sometimes failing to provide high-quality or 
continuous data. Advanced monitoring systems, with fibre-optic communication as the 
preferred infrastructure, improve performance but still require mechanisms for gap-filling and 
data integrity. Additionally, integrating diverse data sources, such as SCADA, and BMS at 
customer side, provides operators with enhanced system visibility and operational flexibility, 
although harmonizing data across varied sources remains complex. 

• Layered Control Approach: Effective control systems require a bottom-up approach, starting 
with hardware-level control and building more complex control logic on top. This structured 
approach allows for robust system performance and aligns with varying automation needs 
across substations. 

• Predictive Model Adjustments to Context: Balancing model complexity with forecast 
accuracy is essential. To improve forecasting, models must incorporate local weather 
correction to address recurrent deviations. 

• Limitations of Non-Linear Solvers: Although non-linear solvers expand optimisation 
possibilities, they’re still evolving. Trade-offs are required between the depth of physical 
modelling and the feasibility of solver convergence, highlighting the need for selective 
application in complex networks. 

• Machine Learning Challenges for Forecasting: Modelling interdependencies between 
heating, cooling, and electricity in systems like heat pumps can be complex. For new 
substations with limited data, simpler forecasting methods adaptable to real-time changes are 
beneficial during early commissioning. 

• Data Management in Predictive Models: Model accuracy is affected by data quality. A 
balance of historical and recent data, coupled with regular model retraining and cross-
validation, ensures models stay adaptable to evolving conditions and prevent overfitting. 
Continuous training of models is essential for accuracy. Advanced machine learning 
techniques, like reinforcement learning, should be further explored to enhance adaptability 
and improve predictions under changing conditions. 

 

 

 


